Q1. A student measured the diameter of a wire using a screw gauge with the least count 0.001 cm and listed the measurements. The measured value should be recorded as - (1) 5.3200 cm - mathongo /// mathongo (2) 5.3 cm hongo - (3) 5.32 cm (4) 5.320 cm Q2. The distance travelled by a body moving along a line in time t is proportional to $t^3$ . The acceleration-time (a,t)graph for the motion of the body will be Q3. An insect crawls up a hemispherical surface very slowly. The coefficient of friction between the insect and the surface is 1/3. If the line joining the centre of the hemispherical surface to the insect makes an angle $\alpha$ with the vertical, the maximum possible value of $\alpha$ so that the insect does not slip is given by (3) $$\csc \alpha = 3$$ (2) $$\sec \alpha = 3$$ (4) $\cos \alpha = 3$ (2) mathongo Q4. A projectile moving vertically upwards with a velocity of 200 ms<sup>-1</sup> breaks into two equal parts at a height of 490 m. One part starts moving vertically upwards with a velocity of 400 ms<sup>-1</sup>. How much time it will take, after the break up with the other part to hit the ground? (1) $2\sqrt{10}$ s (2) 5 s (3) 10 s (4) $\sqrt{10}$ s thongo ///. mathongo ///. mathongo **Q5.** Two bodies A and B of mass m and 2m respectively are placed on a smooth floor. They are connected by a spring of negligible mass. A third body C of mass m is placed on the floor. The body C moves with a velocity $v_0$ along the line joining A and B and collides elastically with A. At a certain time after the collision it is found #### JEE Main Previous Year Paper MathonGo Question Paper that the instantaneous velocities of A and B are same and the compression of the spring is $x_0$ . The spring constant k will be - (1) $m\frac{v_0^2}{x_0^2}$ mathong whathong (2) $m\frac{v_0}{2x_0}$ mathong whathong whathong whathong whathong whathong whathong whathong whathong whathong **Q6.** A spring is compressed between two blocks of masses $m_1$ and $m_2$ placed on a horizontal frictionless surface as shown in the figure. When the blocks are released, they have initial velocity of $v_1$ and $v_2$ as shown. The blocks travel distances $x_1$ and $x_2$ respectively before coming to rest. The ratio $\left(\frac{x_1}{x_2}\right)$ is - ///. mathongo ///. mathongo (2) $\frac{m_1}{m_2}$ nathongo ///. mathongo ///. mathongo ///. - nathongo ///. mathongo ///. mathongo **Q7.** A solid sphere is rolling on a surface as shown in figure, with a translational velocity $v \text{ m s}^{-1}$ . If it is to climb the inclined surface continuing to roll without slipping, then minimum velocity for this to happen is - Q8. This question has Statement 1 and Statement 2. Of the four choices given after the Statements, choose the one that best describes the two Statements. Statement 1: When moment of inertia I of a body rotating about an axis with angular speed $\omega$ increases, its angular momentum L is unchanged but the kinetic energy K increases if there is no torque applied on it. Statement 2: $L = I\omega$ , kinetic energy of rotation $= \frac{1}{2}I\omega^2$ Question Paper MathonGo - (1) Statement 1 is true, Statement 2 is true, Statement (2) Statement 1 is false, Statement 2 is true. 2 is not the correct explanation of Statement 1. - (3) Statement 1 is true, Statement 2 is true, Statement (4) Statement 1 is true, Statement 2 is false. 2 is correct explanation of the Statement 1. - **Q9.** Assuming the earth to be a sphere of uniform density, the acceleration due to gravity inside the earth at a distance of r from the centre is proportional to mathongo (2) $r^{-1}$ hathongo ///. mathongo ///. mathongo (3) $r^2$ - (4) $r^{-2}$ - Q10. Water is flowing through a horizontal tube having cross-sectional areas of its two ends being A and A' such that the ratio A/A' is 5. If the pressure difference of water between the two ends is $3 \times 10^5$ N m<sup>-2</sup>, the velocity of water with which it enters the tube will be (neglect gravity effects) - $(1) 5 \text{ m s}^{-1}$ - $(3) 25 \text{ m s}^{-1}$ - /// mathongo /// mathongo /// mathongo /// - Q11. A given ideal gas with $\gamma = \frac{C_p}{C_v} = 1.5$ at a temperature T. If the gas is compressed adiabatically to one-fourth of its initial volume, the final temperature will be - (1) $2\sqrt{2T}$ - (3) 2T - $^{\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo - **Q12.** n moles of an ideal gas undergo a process $A \to B$ as shown in the figure. Maximum temperature of the gas during the process is - mathongo /// mathongo $(2) \frac{3P_0V_0}{2nR}$ hongo /// mathongo /// mathongo - Q13. This question has Statement 1 and Statement 2. Of the four choices given after the Statements, choose the one that best describes the two Statements. Statement 1: Bats emitting ultrasonic waves can detect the location of a prey by hearing the waves reflected from it. Statement 2: When the source and the detector are moving, the frequency of reflected waves is changed. - (1) Statement 1 is false, Statement 2 is true. - (2) Statement 1 is true, Statement 2 is false. - (3) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of Statement 1. - (4) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation of Statement 1. **Question Paper** MathonGo | Q1 | _ | | | | • | | is superimpose<br>action for the of | | | e to fo | orm athongo | |----------------------|---------------------------------------------------------|--------------------------|-----------------------------------------|------------------|------------------------------------|---------------------------|----------------------------------------------------------------------------------|-----------------|-------------------------------------|----------------|---------------------------| | | $(1) a \cos(kx)$ | $-\omega t$ | $(t+\pi)$ hono | | | (2) | $a\cos(kx+\omega t-$ | $+\pi$ ) | | | | | | (3) $a\cos\left(kx\right)$ | | _ | | | | $a\cos{\left(kx-\omega t ight.}$ | | | | | | /Q1<br>///. | When anoth difference $V$ $C_1$ is then | er par | rallel combinat<br>as the same tota | ion of | $n_2$ capacitors ergy stored in it | each<br>as th | $C_1$ is charged by of capacity $C_2$ e first combina | is ch<br>tion l | arged by a sour | ce of | potential | | | (1) $16\frac{n_2}{n_1}C_1$<br>(3) $2\frac{n_2}{n_1}C_1$ | | | | | (2) | $ rac{2C_1}{n_1n_2}$ thongo $ rac{16C_1}{n_1n_2}$ | | | | | | 01 | 6. Three resist | ors of | $^{\circ}4\Omega$ , $6\Omega$ and $12$ | $\Omega$ are | mathonao<br>e connected in t | narall | el and the com | binati | mathongo<br>ion is connected | d in s | mathongo<br>eries with a | | /4/. | | | | | | oule l<br>(2) ( | neating in the 4<br>0.33 W<br>0.86 W | | | 14. | mathongo | | | mathongo | | | | | (4) ( | mathongo | | | | | | <b>Q</b> 1 ///. ///. | possible rear | sons.<br>er alle<br>nome | (i) In case of pows greater pre | otenti<br>cisio: | ometer, no cur<br>n. (iii) Measure | rent frement not re (2) ( | neter than by a lows through the by the potention levant. Which of i),(iii),(iv) | ne cel<br>omete | l. (ii) The lengter is quicker. (iv | th of t ) The | the athongo e sensitivity | | Q1 | 8. In a sensitiv | e met | er bridge appar | atus | the bridge wire | shou | ld possess | | | | | | /4. | (1) high resi | stivit | | eratu | re coefficient. | (2) 1 | ow resistivity a<br>nigh resistivity | | | | | | Q1 | • | | ce acting on ch velocity is $(2\hat{i}$ | _ | • | _ | $\mu\mathrm{C}$ in magnetic | c field | ${ m d}$ of $2T$ acting ${ m i}$ | n <i>y</i> — | direction, | | | (1) 8 N in z-<br>(3) 4 N in y- | -direc<br>-direc | tion thongo | /4. | | (2) 8<br>(4) 4 | 3 N in y-direction 1 N in z-direction 2 | on | | | | | $\mathbf{O}^2$ | 20. The circuit i | n figi | ure consists of | wires | at the top and | botto | m and identical | sprir | mothongo | nd ris | the sides. The | | ///. | wire at the b | otton | n has a mass of | 10 g | and is 5 cm lo | ng. T | he wire is hang<br>t has a total res | ing as | s shown in the | figure | e. The springs | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | /// n(1) 20 mm /// mathongo /// mathong | (2) 100 mmongo /// mathongo /// mathongo | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------| | (3) 120 mm | (4) 80 mm | | <b>Q24.</b> The first diffraction minimum due to the single sl $5000 \text{\AA}$ falling perpendicularly on the slit. The wide (1) $2.5 \times 10^{-5}$ cm (3) $10 \times 10^{-5}$ cm | it diffraction is seen at $\theta=30^\circ$ for a light of wavelength lth of the slit is $(2)~1.25\times10^{-5}~{\rm cm}$ $(4)~5\times10^{-5}~{\rm cm}$ | | <b>Q25.</b> The maximum number of possible interference m | axima for slit separation equal to $1.8\lambda$ , where $\lambda$ is the | | wavelength of light used, in a Young's double slit (1) zero (3) infinite | experiment is (2) 3 (4) 5 mathongo mathongo | | | The ground level has energy, $E_1 = -8 \mathrm{eV}$ . The two excited | | states have energies, $E_2 = -6 \text{eV}$ and $E_3 = -2 \text{eV}$ present in the emission spectrum of this atom? | V. Then which of the following wavelengths will not be once | | (1) 207 nm<br>(3) 310 nm mathong /// mathong | (2) 465 nm<br>(4) 620 nm /// mathongo /// mathongo | | <b>O27.</b> A doubly ionised Li atom is excited from its grou | nd state $(n=1)$ to $n=3$ state. The wavelengths of the | | spectral lines are given by $\lambda_{32}$ , $\lambda_{31}$ and $\lambda_{21}$ . The r | | | // n(1) 8.1, 0.67 /// mathonge /// mathong | | | (3) 6.4, 1.2 | (4) 6.4, 0.67 | | Q28. Which of the following Statements is correct? | | | (1) The rate of radioactive decay cannot be | (2) Nuclear forces are short range, attractive and | | controlled but that of nuclear fission can be controlled. | charge dependent. | | (3) Nuclei of atoms having same number of neutr | ons (4) Wavelength of matter waves is given by de othonog | | are known as isobars. | Broglie formula but that of photons is not given | | | by the same formula mothongo ///. mothongo | | Q29. This question has Statement 1 and Statement 2. C | of the four choices given after the Statements, choose the one | | that best describes the two Statements. Statement | 1: A pure semiconductor has negative temperature coefficient | | of resistance. Statement 2: On raising the temperaband. | ature, more charge carriers are released into the conduction mathongo mathongo mathongo | | (1) Statement 1 is false, Statement 2 is true. | (2) Statement 1 is true, Statement 2 is false. | | (3) Statement 1 is true, Statement 2 is true, | | | Statement 2 is not a correct explanation of | Statement 2 is the correct explanation of | | mat Statement 1. mathongo /// mathong | Statement 1.0 /// mathongo /// mathongo | | Q30. A 10 kW transmitter emits radio waves of wavele | ength 500 m. The number of photons emitted per second by | | the transmitter is of the order of | mathongo wa mathongo wa mathongo | | 1177 | 97 | /// mathongo /// mathongo /// mathongo /// mathongo MathonGo | Q31. An aqueous | soluti | ion of ox | calic aci | id dih | ydrate cor | ntains its | $6.3~\mathrm{g}$ in | 250ml. | The | volume of | 0.1 N | NaOH | required | |-----------------|--------|------------|-----------|--------|------------|------------|---------------------|--------|-----|-----------|-------|------|----------| | to completel | y neu | ıtralize 1 | 0ml of | this s | solution | | | | | | | | | - /// mathongo /// mathongo (2) 20ml thongo /// mathongo /// mathongo (1) 4ml (3) 2ml - (4) 40 ml - Q32.5 g of benzene on nitration gave 6.6 g of nitrobenzene. The theoretical yield of the nitrobenzene will be - (1) 4.5 g (2) 5.6 g - (3) 8.09 g - mathongo /// mathongo /// mathongo /// mathongo - Q33. If the radius of first orbit of H atom is $a_0$ , the deBroglie wavelength of an electron in the third orbit is - (1) $4\pi a_0$ (2) $8\pi a_0$ (3) $6\pi a_0$ - (4) $2\pi a_0$ - Q34. Which among the following elements has the highest first ionization enthalpy? - (1) Nitrogen (2) Boron (3) Carbon - (4) Oxygen - Q35. The formation of molecular complex $BF_3 NH_3$ results in a change in hybridization of boron - (1) from $sp^2$ to $dsp^2$ (2) from $sp^2$ to $sp^3$ - (3) from $sp^3$ to $sp^2$ authorized /// mathonized (4) from $sp^3$ to $sp^3d$ // mathonized /// mathonized - Q36. Although CN<sup>-</sup>ion and N<sub>2</sub> molecule are isoelectronic, yet N<sub>2</sub> molecule is chemically inert because of - (1) presence of more number of electrons in bonding (2) lone bond energy orbitals - (3) absence of bond polarity - (4) uneven electron distribution. - Q37. Among the following chloro-compound having the lowest dipole moment is $$H_3C$$ $C = C$ - (3) CH<sub>2</sub>Cl<sub>2</sub> mathongo mathongo (4) $H_3$ **Q38.** $\alpha$ , v and u represent most probable velocity, average velocity and root mean square velocity respectively of a gas at a particular temperature. The correct order among the following is (1) $u > v > \alpha$ - (3) $\alpha > u > v$ - mathongo ///. mathongo (4) $u > \alpha > v$ - Q39. The difference between the reaction enthalpy change ( $\Delta_r H$ ) and reaction internal energy change ( $\Delta_r U$ ) for the reaction: - mathongo /// mathongo /// mc $2\mathrm{C}_6\mathrm{H}_6(\mathrm{l})+15\mathrm{O}_2(\mathrm{g}) \Longrightarrow$ /// mathongo /// mathongo Chathongo ///. mathongo - at 300 K is $(R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1})$ mathongo /// mathongo /// mathongo /// mathongo **Question Paper** - $m m(1)~0~J~mol^{-1}$ mathongo /// mathongo (2) $2490~J~mol^{-1}$ /// mathongo /// mathongo $(3) -2490 \text{ J mol}^{-1}$ **Q40.** 8 mol of $AB_3(g)$ are introduced into a 1.0dm<sup>3</sup> vessel. If it dissociates as $2AB_3(g) \rightleftharpoons A_2(g) + 3B_2(g)$ . At equilibrium, 2 mol of $A_2$ are found to be present. The equilibrium constant of this reaction is (2) 3 mathongo ///. mathongo - (1)2 ongo /// mathongo /// mathongo (3)27 (4)36 **Q41.** Given (i) $\mathrm{HCN}(aq) + \mathrm{H_2O}(b) \rightleftharpoons \mathrm{H_3O^+}(aq) + \mathrm{CN^-}(aq)~K_\mathrm{a} = 6.2 \times 10^{-10}$ (ii) $\text{CN}^-(aq) + \text{H}_2\text{O}(1) \rightleftharpoons \text{HCN}(aq) + \text{OH}^-(aq) \ K_b = 1.6 \times 10^{-5}$ . These equilibria show the following order of the relative base strength, - (1) $OH^{-} > H_{2}O > CN^{-}$ (2) $OH^{-} > CN^{-} > H_{2}O$ (3) $H_{2}O > CN^{-} > OH$ (4) $CN^{-} > H_{2}O > OH^{-}$ Q42. athongo /// mathongo /// $$X MnO_4^- + YC_2O_4^2 + ZH^{+//}$$ mathongo /// mathongo ma In the following balanced reaction, walues of X, Y and Z respectively are mathongo W mathongo W mathongo (1) 2,5,16 (2) 8, 2, 5 - (3) 5, 2, 16 - /// mathongo /// mathongo (4) 5,8,4thongo /// mathongo /// mathongo Q43. A metal M on heating in nitrogen gas gives Y. Y on treatment with $H_2O$ gives a colourless gas which when passed through CuSO<sub>4</sub> solution gives a blue colour. Y is - (1) $NH_3$ - mathongo ma - (3) $Mg_3 N_2$ Q44. In the below mentioned compounds the decreasing order of reactivity towards electrophilic substitution is (i) mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo **Question Paper** **JEE Main Previous Year Paper** MathonGo | ///. mathongo ///. mathongo | | | | | |---------------------------------------------------------------------|---------------------------------------------|-----------------------------------|------------------------------------------|----------------------| | | | | | | | (iii) mathongo | | | | | | /// mathongo | | | | | | | | | | | | (iv) nongo (iv) mathongo | | ///. mathongo | ///. mathongo | | | (1) (iv) > (i) > (ii) > (iii) | | (2) (ii) $>$ (iii) $>$ (i) | | | | (3) (iii) > (i) > (iv) > (ii) | | (4) (i) > (ii) > (iii) | > (1V)<br>mathongo | | | <b>Q45.</b> The reaction, $CH_3CHO\frac{[F]}{Zn(Hg)/C}$ | $^{ m H]}_{ m Conc.~HCl}{ m CH}_3{ m CH}_3$ | | | | | (1) Cannizaro's reaction | | (2) Rosenmund red | uction | | | (3) Wolf-Kishner reduction | | (4) Clemmenson re | duction | | | Q46. Water sample is reported to be h | ighly polluted if BO | D (Biological Oxyge | en Demand) value o | of sample becomes | | (1) more than 17ppm | | (2) equal to 10ppm | ŕ | • | | (3) equal to 5ppm | | (4) less than 5ppm | | | | Q47. The radius of a calcium ion is 94 oxide will be | 1pm and of the oxid | e ion is 146pm. The | possible crystal stru | acture of calcium | | (1) tetrahedral | | (2) trigonal | | | | (3) octahedral | | (4) pyramidal | | | | Q48. A solution containing 0.85 g of 2 | $ m ZnCl_2$ in $125.0~ m g$ of | water freezes at $-0.5$ | $23^{\circ}\mathrm{C}$ . The apparent | degree of thongo | | dissociation of the salt is $(K_f)$ for | r water $=1.86~\mathrm{K}$ kg | $g \bmod^{-1}$ , atomic mass | s: $\mathrm{Zn} = 65.3$ and $\mathrm{C}$ | 1 = 35.5) | | $^{\prime\prime\prime}$ n(1) 1.36% $^{\prime\prime\prime}$ mathongo | | (2) 73.5% | | | | (3) 7.35% | | $(4)\ 2.47\%$ | | | | <b>Q49.</b> The ppm level of $F^-$ in a 500 g s | ample of a tooth pas | ste containing $0.2~\mathrm{g}$ I | mathongo | | | (1) 400 | | (2) 1000 | | | | (3) 250 90 /// mathongo | | (4) 200 athongo | | | | <b>Q50.</b> In a chemical reaction $A$ is conv | erted into $B$ . The ra | tes of reaction, starting | ng with initial conc | entrations of $A$ as | | $2 imes 10^{-3} m M$ and $1 imes 10^{-3} m M$ , are | | | TYA MIGUNONIO | | | reaction with respect to reactant | | | | | | (1) 0 Mathongo | | (2) 1.5 | | | | (3) 1<br>mathongo ///. mathongo | | (4) 2 | | | | Q51. The correct statement for both the | | isorption and chemis | | | | | | mathongo | ///. mathongo | | | | | | | | | | | | | | Question Paper JEE Main Previous Year Paper MathonGo (1) both are endothermic onco /// mothongo (2) chemisorption is endothermic but physisorption onco is exothermic (3) both are exothermic mothonic (4) physisorption is endothermic but chemisorption is exothermic. Q52. In the electrolysis of alumina to obtain aluminium metal, cryolite is added mainly to (2) dissolve alumina in molten cryolite (1) lower the melting point of alumina (3) remove the impurities of alumina (4) increase the electrical conductivity **Q53.** Magnetic moment of $Gd^{3+}$ ion (Z = 64) is (1) 3.62 BM (2) 9.72BM (4) 10.60BM (3) 7.9 BM **Q54.** Which of the following complex ions will exhibit optical isomerism? (en = 1, 2-diamine ethane). (1) $\left[\operatorname{Cr}(\operatorname{NH}_3)_2\operatorname{Cl}_2\right]^+$ mathongo (2) $[Co(en)_2Cl_2]^+$ mathongo mathongo $(4) \left[ \text{Zn}(\text{en})_2 \right]^{2+}$ (3) $[Co(NH_3)_4Cl_2]^+$ **Q55.** Which of the following statements is wrong? (1) Ethyl chloride on reduction with Zn - Cu couple (2) The reaction of methyl magnesium bromide with and alcohol gives ethane. mothongo acetone gives butanol-2. Thomas mothons (3) Alkyl halides follow the following reactivity (4) C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> may exist in two isomeric forms sequence on reaction with alkenes. R-I>R-Br>R-Cl>R-I/// mathongo /// mathongo /// mathongo /// mathongo Q56. mathongo /// mathong $^{C}$ = $^{C}$ - mathongo /// mathongo /// mathongo /// mathongo /// mathongo In the given reaction, the product 'A' is mathongo ///. mathongo ///. mathongo ///. mathongo ## Q57. The conversion of benzene diazonium chloride to bromobenzene can be accomplished by (1) Reimer-Tiemann reaction (2) Friedel-Crafts reaction athono (3) Gattermann reaction (4) Azo-coupling reaction ### Q58. Synthetic polymer bakelite can be prepared from following compounds (1) Styrene and vinyl chloride - (2) Acrylonitrile and vinyl chloride - (3) Adipic acid and ethylene glycol mathonia - (4) Phenol and formaldehyde #### **Q59.** Chemically heroin is (1) morphine monoacetate (2) morphine dibenzoate (3) morphine diacetate (4) morphine monobenzoate mathongo #### **Q60.** Amylopectin is a polymer of (1) $\alpha - D$ - glucose (2) amino acid (3) $\beta - D$ - glucose (4) amylase. **Q61.** If $$a,b,c,d$$ and $p$ are distinct real numbers such that $(a^2+b^2+c^2)p^2-2p(ab+bc+cd)+(b^2+c^2+d^2)\leq 0$ , then (1) a, b, c, d are in A.P. (2) ab = cd mathongo mathongo (3) ac = bd (4) a, b, c, d are in G.P. Q62. If the sum of the square of the roots of the equation $$x^2 - (\sin \alpha - 2)x - (1 + \sin \alpha) = 0$$ is least, then $\alpha$ is equal to $$(1) \frac{\pi}{6}$$ mathons (2) $\frac{\pi}{4}$ mathons (2) $\frac{\pi}{4}$ $(1) \frac{\pi}{6}$ $(3) \frac{\pi}{3}$ Q63. The area of the triangle whose vertices are complex numbers $$z, iz, z + iz$$ in the Argand diagram is $$(1) |z| |z|^2 \qquad (2) |1/2| |z|^2 \qquad (3) |4| |z|^2$$ $$(3) |4| |z|^2 \qquad (4) |z|^2$$ $(1) \ 2|z|^2$ $(3) 4|z|^2$ **Question Paper** #### JEE Main Previous Year Paper MathonGo Q64. The sum of the series thongo // mathongo // mathongo // mathongo // mathongo mathongo /// mathongo $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots$ mathongo /// mathongo upto 15 terms is mathongo /// mathongo /// mathongo /// mathongo /// mathongo (1) 1 - mathongo /// mathongo /// mathongo /// mathongo **Q65.** The number of terms in the expansion of $(y^{1/5} + x^{1/10})^{55}$ , in which powers of x and y are free from radical signs are (1) six (2) twelve - (3) seven - // mathongo /// mathongo (4) five athongo /// mathongo /// mathongo **Q66.** If the point (1, a) lies between the straight lines x + y = 1 and 2(x + y) = 3 then a lies in interval (1) $\left(\frac{3}{2},\infty\right)$ (2) $(1, \frac{3}{2})$ $(3) (-\infty, 0)$ $(4) (0, \frac{1}{2})$ **Q67.** If two vertices of a triangle are (5, -1) and (-2, 3) and its orthocentre is at (0, 0), then the third vertex is - (1) (4, -7) - mathongo mathongo (2) (-4,-7) mathongo (4) (4,7) - (3)(-4,7) **Q68.** The area of triangle formed by the lines joining the vertex of the parabola, $x^2 = 8y$ , to the extremities of its latus rectum is - n(1) 2ongo - /// mathongo /// mathongo (2) 8 mathongo /// mathongo /// mathongo - (3) 1 **Q69.** If $P_1$ and $P_2$ are two points on the ellipse $\frac{x^2}{4} + y^2 = 1$ at which the tangents are parallel to the chord joining the points (0,1) and (2,0), then the distance between $P_1$ and $P_2$ is (1) $2\sqrt{2}$ (2) $\sqrt{5}$ athongo /// mathongo /// mathongo (3) $2\sqrt{3}$ (4) $\sqrt{10}$ **Q70.** The logically equivalent preposition of $p \Leftrightarrow q$ is - $\begin{array}{c} (1) \ (p \Rightarrow q \land) q \Rightarrow p \quad ) \\ (3) \ (p \land q \lor) q \neq p \quad ) \end{array} \tag{2)} \ p \land q \\ (4) \ (p \land q \Rightarrow q \lor (p \quad ) \end{array}$ ///. mathongo ///. mathongo ///. mathongo Q71. If the mean of 4, 7, 2, 8, 6 and a is 7, then the mean deviation from the median of these observations is (1) 8 - (2)5 - (3) longo ///. mathongo ///. mathongo - (4) 3 mathongo /// mathongo Q72. If in a triangle ABC, $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$ , then $\cos A$ is equal to (1) 5/7(2) 1/5 athongo /// mathongo /// mathongo (3) 35/19 (4) 19/35 Q73. If $A = \{x \in z^+ : x < 10 \text{ and } x \text{ is a multiple of 3 or 4}\}$ , where $z^+$ is the set of positive integers, then the total number of symmetric relations on A is /// mathongo /// mathongo /// mathongo - $(3) 2^{10}$ - m(1) $2^5$ ngo /// mathongo /// mathongo /// mathongo /// mathongo - Q74. Let A and B be real matrices of the form $\begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ and $\begin{bmatrix} 0 & \gamma \\ \delta & 0 \end{bmatrix}$ , respectively. Statement 1: AB BA is always - an invertible matrix. Statement 2:AB-BA is never an identity matrix. Moreover mother and invertible matrix. - (1) Statement 1 is true, Statement 2 is false. - (2) Statement 1 is false, Statement 2 is true. - (3) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation of Statement mathongo //// mathongo - (4) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation of Statement 1. Q75. $$\begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & b+c & -2c \end{vmatrix}$$ mathongo /// // $$\alpha = \alpha(a+b()b+c()c+a) eq 0$$ mathongo /// mathongo then $\alpha$ is equal to - (1) a + b + c - mathongo /// mathongo /// mathongo /// mathongo - (3)4 - (4) 1mathongo ///. mathongo ///. mathongo - **Q76.** Statement 1: If A and B be two sets having p and q elements respectively, where q > p. Then the total number of functions from set A to set B is $q^p$ Statement 2: The total number of selections of p different objects out of q objects is ${}^{q}C_{p}$ . - (1) Statement 1 is true, Statement 2 is false. - (2) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation of Statement 1. - (3) Statement 1 is false, Statement 2 is true - (4) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation of Statement mathongo /// mathongo /// mathongo - Q77. Statement 1: A function $f: R \to R$ is continuous at $x_0$ if and only if $\lim_{x \to x_0} f(x)$ exists and $\lim_{x\to x_0} f(x) = f(x_0)$ Statement 2: A function $f:R\to R$ is discontinuous at $x_0$ if and only if, $\lim_{x\to x_0} f(x)$ exists and $\lim_{x o x_0}f(x) eq f\left(x_0. ight)$ - (1) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation of Statement 1. - (2) Statement 1 is false, Statement 2 is true. - (3) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation of Statement - (4) Statement 1 is true, Statement 2 is false. M mathongo // mat - (1) $\sin \left[\log \left(\frac{2x+3}{3-2x}\right)\right]$ (2) $\frac{12}{(3-2x^2)}$ (2) $\frac{12}{(3-2x^2)}$ (2) $\frac{12}{(3-2x^2)}$ (2) $\frac{12}{(3-2x^2)}$ (2) $\frac{12}{(3-2x^2)}$ (3) $\frac{12}{(3-2x^2)}$ $\sin \left[\log \left(\frac{2x+3}{3-2x}\right)\right]$ MathonGo - Q79. Consider a rectangle whose length is increasing at the uniform rate of 2 m/sec, breadth is decreasing at the uniform rate of 3 m/sec and the area is decreasing at the uniform rate of 5 m<sup>2</sup>/sec. If after some time the breadth of the rectangle is 2 m then the length of the rectangle is - (1) 2 m (2) 4 m (3) 1 m - (4) 3 m athongo /// mathongo /// mathongo - **Q80.** If $f(x) = xe^{x(1-x)}, x \in R$ , then f(x) is - (1) decreasing on [-1/2, 1] - (2) decreasing on R mothongo mathongo (3) increasing on [-1/2, 1] - (4) increasing on R - **Q81.** The integral of $\frac{x^2-x}{x^3-x^2+x-1}$ w.r.t. x is - (1) $\frac{1}{2}\log(x^2+1+c)$ (2) $\frac{1}{2}\log|x^2-1|+c$ (3) $\log(x^2+1+c)$ (4) $\log|x^2-1|+c$ - (3) $\log (x^2 + 1 + c)$ - **Q82.** If $\frac{d}{dx}G(x)=\frac{e^{\tan x}}{x}, x\in(0,\pi/2)$ , then $\int_{1/4}^{1/2}\frac{2}{x}\cdot e^{\tan(\pi x^2)}dx$ is equal to \_\_\_\_\_\_ mothongo \_\_\_\_\_ mothongo - (1) $G(\pi/4) G(\pi/16)$ - (2) $2[G(\pi/4) G(\pi/16)]$ - $(3) \pi [G(1/2) G(1/4)]$ ongo /// mathongo $(4) G(1/\sqrt{2}) G(1/2)$ mathongo /// mathongo - **Q83.** The area enclosed by the curves $y = x^2$ , $y = x^3$ , x = 0 and x = p, where p > 1, is 1/6. The p equals - (1) 8/3 - $(2)\ 16/3$ - (3)2nathongo ///. mathongo ///. mathongo - $(4) \ 4/3$ - **Q84.** If a straight line y-x=2 divides the region $x^2+y^2\leq 4$ into two parts, then the ratio of the area of the smaller part to the area of the greater part is - (1) $3\pi 8 : \pi + 8$ (2) $\pi - 3 : 3\pi + 3$ (3) $3\pi - 4 : \pi + 4$ - (4) $\pi 2 : 3\pi + 2$ - **Q85.** Statement 1: The degrees of the differential equations $\frac{dy}{dx} + y^2 = x$ and $\frac{d^2y}{dx^2} + y = \sin x$ are equal. Statement 2: The degree of a differential equation, when it is a polynomial equation in derivatives, is the highest positive integral power of the highest order derivative involved in the differential equation, otherwise degree is not defined. - (1) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation of Statement 1. - (2) Statement 1 is false, Statement 2 is true. - (3) Statement 1 is true, Statement 2 is false. - (4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation of Statement mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo - **Q86.** If $\vec{u} = \hat{j} + 4\hat{k}$ , $\vec{v} = \hat{i} + 3\hat{k}$ and $\vec{w} = \cos\theta\hat{i} + \sin\theta\hat{j}$ are vectors in 3-dimensional space, then the maximum possible value of $|\vec{u} imes \vec{v} \cdot \vec{w}|$ is \_\_\_\_\_ mathongo \_\_\_\_ mathongo \_\_\_\_ - (1) $\sqrt{3}$ - (3) $\sqrt{14}$ - o ///. mathongo ///. mathongo (4) 7 mathongo ///. mathongo - **Q87.** Statement 1: If the points (1,2,2), (2,1,2) and (2,2,z) and (1,1,1) are coplanar, then z=2. Statement 2: If the 4 points P, Q, R and S are coplanar, then the volume of the tetrahedron PQRS is 0. # JEE Main Previous Year Paper **Question Paper** MathonGo - (1) Statement 1 is false, Statement 2 is true. (2) Statement 1 is true, Statement 2 is false. - (3) Statement 1 is true, Statement 2 is true, - Statement 2 is a correct explanation of Statement 1. - (4) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation of Statement 1. **Q88.** A unit vector which is perpendicular to the vector $2\hat{i} - \hat{j} + 2\hat{k}$ and is coplanar with the vectors $\hat{i} + \hat{j} - \hat{k}$ and - $(3) \frac{3\hat{i}+2\hat{j}+2\hat{k}}{\sqrt{17}}$ - go /// mathongo /// mathongo (2) $\frac{3\hat{i}+2\hat{j}-2\hat{k}}{\sqrt{17}}$ mathongo /// mathongo - $(4) \frac{2\hat{i}+2\hat{j}-\hat{k}}{n^3}$ mathongo /// mathongo /// **Q89.** The coordinates of the foot perpendicular from the point (1,0,0) to the line /// mathongo /// mathongo $$\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$$ are - (3) (5, -8, -4) (4) (3, -4, -2) (4) (3, -4, -2) (5, -8, -4) (4) (3, -4, -2) (5, -8, -4) (5, -8, -4) (6, -4, -2) (7, -4, -2) (8, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, -4, -2) (9, - mathongo /// // **Q90.** A number n is randomly selected from the set $\{1, 2, 3, \dots, 1000\}$ . The probability that $\frac{\sum_{i=1}^{n} i^2}{\sum_{i=1}^{n} i}$ is an integer is (1) 0.331 - (3) 0.334 - mathongo /// mathongo /// mathongo /// mathongo /// mathongo | | | ` | |----------|-------|---| | Question | Paper | | | ANSWER KEYS | mention go | ///. mulihaligo | ///. unturinorigo ///. | marintango | ///. | |-------------------------------------|--------------------|-------------------------|-------------------------------------|-------------------------|--------------------------| | 1. (4) <sub>nathon</sub> 2. (2)// | <b>3.</b> (1) | 4. (3) <sub>nonco</sub> | 5. (4) 6. (1) // | ma 7. (4) <sub>go</sub> | ///. <b>8.</b> (2) hongo | | <b>9.</b> (1) <b>10.</b> (1) | <b>11.</b> (3) | <b>12.</b> (4) | <b>13.</b> (3) <b>14.</b> (2) | <b>15.</b> (4) | <b>16.</b> (3) | | <b>17.</b> (3) athon <b>18.</b> (1) | <b>mat 19.</b> (1) | <b>20.</b> (1) ongo | <b>21.</b> (3) <b>22.</b> (1) | 23. (3) | <b>24.</b> (3) | | <b>25.</b> (2) <b>26.</b> (2) | <b>27.</b> (3) | <b>28.</b> (1) | <b>29.</b> (4) <b>30.</b> (2) | <b>31.</b> (4) | <b>32.</b> (3) | | <b>33.</b> (3) <b>34.</b> (1) | <b>35.</b> (2) | <b>36.</b> (3) | <b>37.</b> (3) <b>38.</b> (1) | <b>39.</b> (4) | <b>40.</b> (3) | | <b>41.</b> (2) <b>42.</b> (1) | <b>43.</b> (3) | 44. (4) | <b>45.</b> (4) <b>46.</b> (1) | <b>47.</b> (3) | 48. (2) | | <b>49.</b> (1) <b>50.</b> (4) | <b>51.</b> (3) | <b>52.</b> (1) | <b>53.</b> (3) <b>54.</b> (2) | <b>55.</b> (2) | <b>56.</b> (3) | | <b>57.</b> (3) athon <b>58.</b> (4) | <b>59.</b> (3) | /// <b>60.</b> (1) ongo | <b>61.</b> (4) athor <b>62.</b> (4) | ma <b>63.</b> (2) | <b>64.</b> (3) ongo | | <b>65.</b> (1) <b>66.</b> (4) | <b>67.</b> (2) | <b>68.</b> (2) | <b>69.</b> (4) <b>70.</b> (1) | <b>71.</b> (4) | <b>72.</b> (2) | | <b>73.</b> (2) <b>74.</b> (1) | <b>75.</b> (3) | <b>76.</b> (4) | <b>77.</b> (4) <b>78.</b> (3) | <b>79.</b> (4) | <b>80.</b> (3) | | <b>81.</b> (1) <b>82.</b> (1) | <b>83.</b> (4) | <b>84.</b> (4) mathongo | <b>85.</b> (4) <b>86.</b> (2) | <b>87.</b> (1) | <b>88.</b> (4) | | <b>89.</b> (4) <b>90.</b> (3) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |