- Q1. In terms of resistance R and time T, the dimensions of ratio $\frac{\mu}{\varepsilon}$ of the permeability μ and permittivity ε is:
 - (1) $[RT^{-2}]$

- $(3) \left[\mathbb{R}^2 \right]$
- Q2. The initial speed of a bullet fired from a rifle is 630 m/s. The rifle is fired at the centre of a target 700 m away mot at the same level as the target. How far above the centre of the target? // mothonog /// mothonog ///
 - (1) 1.0 m

- mathongo /// mathongo /// (4) 9.8 m
- **Q3.** A body of mass 5 kg under the action of constant force $\vec{F} = F_x \hat{i} + F_y \hat{j}$ has velocity at t=0 s as

- Q4. A small ball of mass m starts at a point A with speed vo and moves along a frictionless track AB as shown. The
- track BC has coefficient of friction μ . The ball comes to stop at C after travelling a distance L which is:

- **Q5.** A thin bar of length L has a mass per unit length λ , that increases linearly with distance from one end. If its total mass is M and its mass per unit length at the lighter end is λ_0 , then the distance of the centre of mass from the lighter end is:

- Q6. From a sphere of mass M and radius R, a smaller sphere of radius $\frac{R}{2}$ is carved out such that the cavity made in the original sphere is between its centre and the periphery (See figure). For the configuration in the figure where the distance between the centre of the original sphere and the removed sphere is 3R, the gravitational force

between the two sphere is:

(1) Ethanol > Water > Mercury	t? mathong mathong mathong mathong (2) Water > Ethanol > Mercury	
(3) Mercury > Ethanol > Water	(4) Ethanol > Mercury > Water	
athongo ///. mathongo ///. matho	ongo /// mathongo /// mathongo /// mathongo ///	
	0^{-5} kg and their avarage terminal velocity is 9 m/s. Calculate the	
energy transferred by rain to each square r (1) $3.5 \times 10^5~\mathrm{J}$	metre of the surface at a place which receives 100 cm of rain in a year.	
(3) $3.0 \times 10^5 \text{ J}$	$(4)~9.0 imes 10^4~{ m J}$	
O9. A tank with a small hole at the bottom has	been filled with water and kerosene (specific gravity 0.8). The	
height of water is 3 m and that of kerosene	e 2 m. When the hole is opened the velocity of fluid coming out from	
it is nearly: (take $g = 10 \text{ ms}^{-2}$ and density	· · · · · · · · · · · · · · · · · · ·	
$(1) 10.7 \text{ ms}^{-1}$	$(2) 9.6 \text{ ms}^{-1}$	
mathongo mathongo mathongo mathongo	pngo $///$ (4) 7.6 ms ⁻¹ $///$ mathongo $///$ mathongo $///$	
$\mathbf{Q10.}\mathrm{An}$ air bubble of radius $0.1\ \mathrm{cm}$ is in a liq	uid having surface tension $0.06~\mathrm{N/m}$ and density $10^3~\mathrm{kg/m^3}$. The	
	greater than the atmospheric pressure. At what depth is the bubble	
ath (1) 0.1 m/ mathongo /// matho		
(3) 0.20 m	(4) 0.25 m	
temperature of 30° C. It takes 5 minutes i	oling is cooling down from its peak value 80°C to an ambient n cooling down from 80°C to 40°C. How much time will it take to	
cool down from 62°C to 32°C? (Given 1	$\ln 2 = 0.693$. $\ln 5 = 1.609$)	
cool down from 62°C to 32°C? (Given I		
(1) 3.75 minutes (3) 9.6 minutes	(2) 8.6 minutes (4) 6.5 minutes	
(1) 3.75 minutes (3) 9.6 minutes	(2) 8.6 minutes (4) 6.5 minutes (2) mathongo /// mathongo ///	
(1) 3.75 minutes (3) 9.6 minutes (4) mathematic compression, 830 J of the state of	(2) 8.6 minutes (4) 6.5 minutes mathongo mathong	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J or volume by 50%. The change in its temper	(2) 8.6 minutes (4) 6.5 minutes mathons with a mathon of work is done on 2 moles of a diatomic ideal gas to reduce its erature is nearly: $(R = 8.3 J K^{-1} \text{ mol}^{-1})$	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J or volume by 50%. The change in its temper (1) 40 K	(2) 8.6 minutes (4) 6.5 minutes (4) 6.5 minutes (4) 6.5 minutes (4) 6.5 minutes (5) mathon (6) mathon (7) mathon (8) mathon (8) mathon (8) mathon (8) mathon (8) mathon (9) mathon (9) mathon (1) mat	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J or volume by 50%. The change in its temper	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its erature is nearly: $(R = 8.3 J K^{-1} mol^{-1})$ (2) 33 K (4) 14 K	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J or volume by 50%. The change in its tempe (1) 40 K (3) 20 K	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its erature is nearly: $(R = 8.3 J K^{-1} mol^{-1})$ (2) 33 K (4) 14 K	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J of volume by 50%. The change in its temper (1) 40 K (3) 20 K Q13. An ideal monoatomic gas is confined in a	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its strature is nearly: $(R = 8.3 J K^{-1} \text{ mol}^{-1})$ (2) 33 K (4) 14 K	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J of volume by 50%. The change in its tempe (1) 40 K (3) 20 K Q13. An ideal monoatomic gas is confined in a Initially the gas is at 300 K and occupies	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its reature is nearly: $(R = 8.3JK^{-1} \text{ mol}^{-1})$ (2) 33 K (4) 14 K (4) 14 K (5) mathons (6) a cylinder by a spring loaded piston of cross section $8.0 \times 10^{-3} \text{ m}^2$.	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J of volume by 50%. The change in its temper (1) 40 K (3) 20 K Q13. An ideal monoatomic gas is confined in a limitally the gas is at 300 K and occupies shown in figure. The gas is heated by a second control of the second control of	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its exature is nearly: $(R = 8.3JK^{-1} \text{ mol}^{-1})$ (2) 33 K (4) 14 K a cylinder by a spring loaded piston of cross section $8.0 \times 10^{-3} \text{ m}^2$. The a volume of $2.4 \times 10^{-3} \text{ m}^3$ and the spring is in its relaxed state as	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J or volume by 50%. The change in its tempe (1) 40 K (3) 20 K Q13. An ideal monoatomic gas is confined in a Initially the gas is at 300 K and occupies shown in figure. The gas is heated by a seconstant of the spring is 8000 N/m and the sprin	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its reature is nearly: $(R = 8.3JK^{-1} \text{ mol}^{-1})$ (2) 33 K (4) 14 K (4) 14 K (5) a cylinder by a spring loaded piston of cross section $8.0 \times 10^{-3} \text{ m}^2$. The a volume of $2.4 \times 10^{-3} \text{ m}^3$ and the spring is in its relaxed state as small heater until the piston moves out slowly by 0.1 m. The force	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J of volume by 50%. The change in its temper (1) 40 K (3) 20 K Q13. An ideal monoatomic gas is confined in a limitally the gas is at 300 K and occupies shown in figure. The gas is heated by a seconstant of the spring is 8000 N/m and the piston are thermally insulated. The piston	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its exature is nearly: $(R = 8.3 J K^{-1} \text{ mol}^{-1})$ (2) 33 K (4) 14 K a cylinder by a spring loaded piston of cross section $8.0 \times 10^{-3} \text{ m}^2$. a volume of $2.4 \times 10^{-3} \text{ m}^3$ and the spring is in its relaxed state as mall heater until the piston moves out slowly by 0.1 m . The force the atmospheric pressure is $1.0 \times 10^5 \text{ N/m}^2$. The cylinder and the	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J or volume by 50%. The change in its tempe (1) 40 K (3) 20 K Q13. An ideal monoatomic gas is confined in a Initially the gas is at 300 K and occupies shown in figure. The gas is heated by a seconstant of the spring is 8000 N/m and the piston are thermally insulated. The piston piston and the cylinder. The final temperature of the spring is 8000 N/m and the cylinder.	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its erature is nearly: $(R = 8.3 J K^{-1} \text{ mol}^{-1})$ (2) 33 K (4) 14 K a cylinder by a spring loaded piston of cross section $8.0 \times 10^{-3} \text{ m}^2$. Is a volume of $2.4 \times 10^{-3} \text{ m}^3$ and the spring is in its relaxed state as small heater until the piston moves out slowly by 0.1 m . The force the atmospheric pressure is $1.0 \times 10^5 \text{ N/m}^2$. The cylinder and the mand the spring are massless and there is no friction between the	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J or volume by 50%. The change in its tempe (1) 40 K (3) 20 K Q13. An ideal monoatomic gas is confined in a Initially the gas is at 300 K and occupies shown in figure. The gas is heated by a seconstant of the spring is 8000 N/m and the piston are thermally insulated. The piston piston and the cylinder. The final temperature of the spring is 8000 N/m and the cylinder.	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its exature is nearly: $(R = 8.3 J K^{-1} \text{ mol}^{-1})$ (2) 33 K (4) 14 K a cylinder by a spring loaded piston of cross section $8.0 \times 10^{-3} \text{ m}^2$. As a volume of $2.4 \times 10^{-3} \text{ m}^3$ and the spring is in its relaxed state as small heater until the piston moves out slowly by 0.1 m . The force the atmospheric pressure is $1.0 \times 10^5 \text{ N/m}^2$. The cylinder and the mand the spring are massless and there is no friction between the ature of the gas will be: (Neglect the heat loss through the lead wires	
(1) 3.75 minutes (3) 9.6 minutes Q12. During an adiabatic compression, 830 J of volume by 50%. The change in its temper (1) 40 K (3) 20 K Q13. An ideal monoatomic gas is confined in a linitially the gas is at 300 K and occupies shown in figure. The gas is heated by a seconstant of the spring is 8000 N/m and to piston are thermally insulated. The piston piston and the cylinder. The final temperature of the spring is 8000 N/m and the cylinder.	(2) 8.6 minutes (4) 6.5 minutes of work is done on 2 moles of a diatomic ideal gas to reduce its exature is nearly: $(R = 8.3 J K^{-1} \text{ mol}^{-1})$ (2) 33 K (4) 14 K a cylinder by a spring loaded piston of cross section $8.0 \times 10^{-3} \text{ m}^2$. As a volume of $2.4 \times 10^{-3} \text{ m}^3$ and the spring is in its relaxed state as small heater until the piston moves out slowly by 0.1 m . The force the atmospheric pressure is $1.0 \times 10^5 \text{ N/m}^2$. The cylinder and the mand the spring are massless and there is no friction between the ature of the gas will be: (Neglect the heat loss through the lead wires	

MathonGo

Question Paper

constant, m is the mass of the oscillator and r is the damping constant. If the ratio $\frac{r^2}{mk}$ is 8%, the change in time period compared to the undamped oscillator is approximately as follows:

(1) increases by
$$1\%$$

Q16. A cone of base radius
$$R$$
 and height h is located in a uniform electric field \overrightarrow{E} parallel to its base. The electric

flux entering the cone is:
(1)
$$\frac{1}{2}$$
EhR

Q17. A parallel plate capacitor is made of two plates of length 1, width
$$w$$
 and separated by distance d . A dielectric slab (dielectric constant K) that fits exactly between the plates is held near the edge of the plates. It is pulled into the capacitor by a force $F = -\frac{\partial U}{\partial x}$ where U is the energy of the capacitor when dielectric is inside the capacitor up to distance x (See figure). If the charge on the capacitor is Q then the force on the dielectric when

moth it is near the edge is:

$$(1) \frac{Q^2 d}{2wl^2 \varepsilon_0} K$$

$$(1) \frac{Q^2 d}{2wl^2 \varepsilon_0} K$$

$$(3) \frac{Q^2 d}{2wl^2 \varepsilon} (K - 1)$$

(2)
$$\frac{Q^2 W}{2dl^2 \varepsilon_0} (K-1)$$

(4) $\frac{Q^2 w}{2dl^2 \varepsilon_0} K$

$$(4) \; \frac{\mathrm{Q^2 w}}{2 \mathrm{dl^2 \varepsilon_o}} \mathrm{K}$$

Q18. In the circuit shown, current (in A) through 50 V and 30 V batteries are, respectively: /// mathongo /// mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo /// mathongo ///. mathongo ///. mathongo ///. mat mathongo ///. mathong $\frac{1}{20}$ \gtrsim 20 Ω 10 Ω /// mo30 Vgo /// mathongo /// mathongo /// mat mathongo ///. mathong 5Ω (2) 3.5 and 2 (1) 2.5 and 3 (4) 3 and 2.5 /// mothongo /// mothongo /// mot math (3) 4.5 and 1 mathongo /// mathongo /// Q19. In the circuit diagrams (A, B, C and D) shown below, R is a high resistance and S is a resistance of the order of galvanometer resistance G. The correct circuit, corresponding to the half deflection method for finding the resistance and figure of merit of the galvanometer, is the circuit labelled as: (a) ///. matroncK₂ mathongo ///. mathongo ///. mathongo ///. mathongo ///. mat mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo $\frac{1}{1}$ $\frac{1}$ math (b)

mathongo $/\!\!/$. mathongo ///. mathongo ///. mathongo ///. mathongo //. mathongo //. mathongo //. mathongo //. mathongo //. mathongo mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo Inathon /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// (1) Circuit A with $G = \frac{RS}{(R-S)}$ mathongo /// mathongo /// mathongo /// mathongo /// (2) Circuit B with G = S(3) Circuit C with G = S(4) Circuit D with G = S mathongo M m Q20. Three identical bars A, B and C are made of different magnetic materials. When kept in a uniform magnetic nongo /// mathongo /// mat field, the field lines around them look as follows: Make the correspondence of these bars with their material being diamagnetic (D), ferromagnetic (F) and paramagnetic (P): (3) $A \leftrightarrow P, B \leftrightarrow F, C \leftrightarrow D$ (4) $A \leftrightarrow F, B \leftrightarrow P, C \leftrightarrow D$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q21. Three straight parallel current carrying conductors are shown in the figure. The force experienced by the

middle conductor of length 25 cm is:

- (1) 3×10^{-4} N toward right
- (2) 6×10^{-4} N toward right
- (3) 9×10^{-4} N toward right
- (4) Zero

Q22. A coil of circular cross-section having 1000 turns and 4 cm² face area is placed with its axis parallel to a magnetic field which decreases by 10^{-2} Wb m^{-2} in 0.01 s. The e.m.f. induced in the coil is:

- (1) 400 mV
- mathongo /// mathongo /// (2) 200mV
- (3) 4mV

(4) 0.4 mV

Q23. An electromagnetic wave of frequency 1×10^{14} hertz is propagating along z-axis. The amplitude of electric field is 4 V/m. If $\varepsilon_0 = 8.8 \times 10^{-12} C^2/N - m^2$, then average energy density of electric field will be:

- moth (1) $35.2 \times 10^{-10} \text{ J/m}^3$
- mathongo $ule{1/2}$ (2) $35.2 imes 10^{-11} \, \mathrm{J/m^3}$ thongo $ule{1/2}$ mathongo
- (3) $35.2 \times 10^{-12} \text{ J/m}^3$

(4) $35.2 \times 10^{-13} \text{ J/m}^3$

Q24. An object is located in a fixed position in front of a screen. Sharp image is obtained on the screen for two positions of a thin lens separated by 10 cm. The size of the images in two situations are in the ratio 3:3. What moth is the distance between the screen and the object?

(1) 124.5 cm

(2) 144.5 cm

(3) 65.0 cm

(4) 99.0 cm

Q25. In a compound microscope the focal length of objective lens is 1.2 cm and focal length of eye piece is 3.0 cm. When object is kept at 1.25 cm in front of objective, final image is formed at infinity. Magnifying power of the compound microscope should be:

- (1)200
- mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///
- (3)400

Q26. Two monochromatic light beams of intensity 16 and 9 units are interfering. The ratio of intensities of bright and dark parts of the resultant pattern is:

 $(1) \frac{16}{9}$

 $(2) \frac{4}{3}$ $(4) \frac{49}{1}$

 $(3) \frac{7}{1}$

Q27. A photon of wavelength λ is scattered from an electron, which was at rest. The wavelength shift $\Delta\lambda$ is three times of λ and the angle of scattering θ is 60° . The angle at which the electron recoiled is ϕ . The value of $\tan \phi$

(3) NH₃

Question Paper MathonGo

			s mı	ach small	er than the s	peed o	f light) ongo						
(1)	0.1	6					$(2)\ 0.22$						
$math^{(3)}$	0.2	5 ///. math					(4) 0.28	nagnetic radiation) with List-II (Part of electromagnetic given below this lists:					
Q28. Ma	itch	the List-I (Ph	eno	menon as	ssociated with	n elect	romagnetic rad	iation	n) with List-II (Part o	of electromagne	etic	
math spe	ectru	um) and select	the	correct c	code from the	choic	es given below	this	lists: thongo				
		List I		List II									
	I	Doublet of sodium	(A)	Visible radiation	mathongo								
	II	Wavelength	(B)	Microwav									
	go	to temperature associated with	ng	o ///.	mathongo								
	go	the isotropic radiation filling all space	ong	0 ///.	mathongo								
	go	Wavelength emitted by atomic	(C)	Short radio wave	mathongo								
	go	hydrogen in interstellar space matho	ong	0 ///.	mathongo								
	IV	Wavelength of radiation arising		X-rays									
	go	from two close energy levels in hydrogen	ong	0 ///.	mathongo								
mathon	go (I)	//. matho	one	(D) (IV	mathongo		mathongo		mathongo	///.			
		-(A), (II)-(B), -(D), (II)-(C),	` ′), (III)-(C), (IV)), (III)-(D), (IV)				
mathon	go	(D), (II)-(C), math	ong)-(A), (1 v	mathongo		mathongo	i)-(A)	mathongo)-(A)			
				•	,		ing produced at	t a co	nstant rate of 1	00 nu	iclei/s. If at $t=$	0	
		vere no nuclei	, the	e time wh	en there are	50 nuo							
` '	$1 \mathrm{s}$						$(2) 2 \ln \left(\frac{4}{3}\right) s$						
(3) mathon	$\ln 2$	2 s ///. matho					$(4) \ln \left(\frac{4}{3}\right) s$						
Q30. A 2	Zene					load a	s show below:						
		4 kΩ	A	\rightarrow	mathongo								
mathon	50 V	matha	ᆚ	$1_{\rm Z}$ $10 {\rm V} = {\rm V}_{\rm Z}$	$ \begin{cases} R_{L} = 2k\Omega \end{cases} $	14.							
		///. matric	В	0 77.	mathongo								
Th	e cu	rrents, $\mathrm{I}, \mathrm{I}_{\mathrm{Z}}$ ar	nd I	L are resp	ectively.								
` '		$\mathrm{mA}, 5~\mathrm{mA}, 10$					(2) 15 mA, 7.						
(3)	12.	5 mA, 5 mA,	7.5	mA			(4) 12.5 mA,	$7.5 \mathrm{n}$	${ m nA, 5~mA}$				
-		-		_			tains 12.5% (by formula of the		, ,	The	density of the		
	NE		,				$(2) N_3H$						

(4) N_2H_4

Question Paper

MathonGo

Q32. If λ_0 and λ be threshold wavelength and wavelength of incident light, the velocity of photoelectron ejected from the metal surface is:

$$(1)\sqrt{\frac{2h}{m}(\lambda_0-\lambda)}$$

(2)
$$\sqrt{\frac{2hc}{m}(\lambda_{\rm o} - \lambda)}$$

(3)
$$\sqrt{\frac{2hc}{m} \left(\frac{\lambda_0 - \lambda}{\lambda \lambda_0}\right)}$$

athongo (4)
$$\sqrt{\frac{2h}{m}\left(\frac{1}{\lambda_o} - \frac{1}{\lambda}\right)}$$
 mathongo (7) mathongo

Q33. Based on the equation:

the wavelength of the light that must be absorbed to excite hydrogen electron from level n = 1 to level n = 2will be: $(h = 6.625 \times 10^{-34} Js, C = 3 \times 10^8 ms^{-1})$

(1)
$$1.325 \times 10^{-7}$$
 m

(2)
$$1.325 \times 10^{-10} \text{ m}$$

(3)
$$2.650 \times 10^{-7}$$
 m

(4)
$$5.300 \times 10^{-10}$$
 m

Q34. Which of the following series correctly represents relations between the elements from X to Y? $X \to Y$

(1)
$$_3\mathrm{Li} \rightarrow _{19}$$
 K Ionization enthalpy increases

(2)
$$_9 ext{ F} o _{35} ext{Br}$$
 Electron gain enthalpy (negative sign) increases

(3)
$$_6{
m C}
ightarrow {}_{32}{
m Ge}$$
 Atomic radii increases

(4)
$$_{18}{
m Ar}
ightarrow {_{54}{
m Xe}}$$
 Noble character increases

Q35. The correct order of bond dissociation energy among N_2 , O_2 , O_2 is shown in which of the following arrangements? (2) $O_2^- > O_2 > N_2$ mathongo

(1)
$$N_2 > O_2^- > O_2$$

(2)
$$O_2^- > O_2 > N_2$$

(3)
$$N_2 > O_2 > O_2^-$$

(4)
$$O_2 > O_2^- > N_2$$
 mathongo /// mathongo /// mathongo ///

Q36. Which one of the following does not have a pyramidal shape?

$$(1) (CH_3)_3 N$$

(2)
$$(SiH_3)_3 N$$

(4) $P(SiH_3)_3$ mathongo mathongo

$$(3) P(CH_3)_3$$

$$(4) P(SiH_3)_2$$

Q37. In allene (C₃H₄), the type(s) of hybridization of the carbon atoms is (are):

(1) sp and sp³

(2) sp² and sp

(3) only sp^2

(4) sp² and sp³

Q38. The initial volume of a gas cylinder is 750.0 mL. If the pressure of gas inside the cylinder changes from 840.0 mmHg to 360.0 mmHg, the final volume the gas will be:

(1) 1.750 L

(2) 3.60 L

(3) 4.032 L

(4) 7.50 L

Q39. The molar heat capacity (C_p) of CD_2O is 10 cals at 1000 K. The change in entropy associated with cooling of 32 g of CD_2O vapour from 1000 K to 100 K at constant pressure will be: (D = deuterium, atomic mass = 2u)

- $(1) 23.03 caldeg^{-1}$
- ongo // mathongo // (2) -23.03caldeg⁻¹
- (3) 2.303caldeg⁻¹

(4) -2.303caldeg⁻¹

Q40. Consider the following equilibrium

$$AgCl \downarrow +2NH_3 \rightleftharpoons \left[Ag(NH_32_2)^+ + Cl^-\right]$$

White precipitate of AgCl appears on adding which of the following?

math (1) NH ₃ // mathongo // mathongo // (3) aqueous HNO ₃	(2) aqueous NaCl mathongo /// mathongo (4) aqueous NH ₄ Cl	
Q41. Assuming that the degree of hydrolysis is small, the $(K_a = 1.0 \times 10^{-5})$ will be:	pH of 0.1M solution of sodium acetate mathongo	
math(1) 5.0 /// mathongo /// mathongo ///	(2) 6.0 _{ongo} /// mathongo /// mathongo (4) 9.0	
Q42. Which of the following statements about Na ₂ O ₂ is	not correct? /// mothongo /// mathongo	
(1) It is diamagnetic in nature	(2) It is derivative of H ₂ O ₂	
(3) $\mathrm{Na_2O_2}$ oxidises $\mathrm{Cr^{3+}}$ to $\mathrm{CrO_4^{2-}}$ in acid medium	a. (4) It is the super oxide of sodium	
Q43.	DI. U	
mathongo ///. mathongo ///. mathongo	$C = Ph$ $C = C \stackrel{H}{\swarrow} M$ $C = C \stackrel{H}{\swarrow} M$	
The reagent needed for converting	H	
moth (1) Cat. Hydrogenation // mothongo //	(2) H ₂ /Lindlar Cat. mathongo /// mathongo	
(3) Li/NH ₃	(4) LiAlH ₄	
Q44. The gas liberated by the electrolysis of Dipotassium	a succinate solution is: mathongo /// mathongo	
(1) Ethane	(2) Ethyne	
(A) T.1	(A) P	
	madicings and madicings	
Q45. Which of the following statements about the depleti		
math (1) The problem of ozone depletion is less serious a		
poles because NO ₂ solidifies and is not available		
for consuming CIO° radicals.	poles act as catalyst for photochemical reactions involving the decomposition of ozone of Cl [•] and CIO [•] radicals.	
(3) Freons, chlorofluorocarbons, are inert.	(4) Oxides of nitrogen also do not react with ozone	
Chemically, they do not react with ozone in	in stratosphere.	
mathon stratosphere. thongo /// mathongo ///		
Q46. The appearance of colour in solid alkali metal halide	es is generally due to:	
(1) Schottky defect /// mathongo ///	(2) Frenkel defect mathongo /// mathongo	
(3) Interstitial position	(4) F-centres	
Q47. In some solutions, the concentration of H_3O^+ remastrong base are added to them. These solutions are k	_	
math (1) Ideal solutionshongo /// mathongo ///	(2) Colloidal solutions though mathongo	
(3) True solutions	(4) Buffer solutions	
Q48. Given // mathongo // mathongo //		
mathongo /// mathongo /// ${ m Fe}^{3+}({ m aq})+{ m e}^- ightarrow$	${ m Fe}^{2+}({ m aq}); { m E}^0 = +0.77~{ m V}$	
	$ ightarrow ext{Al(s)}; ext{E}^0 = -1.66 ext{ V}$	
	$ ho ag{Br}^-; ext{E}^0 = +1.09 ext{ V}$	

Considering the electrode potentials, which of the following represents the correct order of reducing power?

- math (1) ${
 m Fe}^{2+}$ < ${
 m A}l$ < ${
 m Br}$ mathongo /// (2) ${
 m Br}$ < ${
 m Fe}^{2+}$ < ${
 m A}l$ athongo /// mathongo
 - (3) A1 $< Br^- < Fe^{2+}$

- (4) Al $< Fe^{2+} < Br^{-}$
- **Q49.** In the reaction of formation of sulphur trioxide by contact process $2SO_2 + O_2 \rightleftharpoons 2SO_3$ the rate of reaction was measured as $\frac{d[O_2]}{dt} = -2.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$. The rate of reaction is terms of $[SO_2]$ in $molL^{-1} \text{ s}^{-1}$ will

 - $(1) -1.25 \times 10^{-4}$

 $(2) -2.50 \times 10^{-4}$

 $(3) -3.75 \times 10^{-4}$

- $(4) -5.00 \times 10^{-4}$ mathongo
- **Q50.** For the reaction, $2 N_2 O_5 \rightarrow 4 N O_2 + O_2$, the rate equation can be expressed in two ways
 - $-rac{ ext{d}[ext{N}_2 ext{O}_5]}{ ext{d}t}= ext{k}\left[ext{N}_2 ext{O}_5
 ight]n ext{nd}+rac{ ext{d}[ext{N}_2 ext{O}_2]}{ ext{d}t}= ext{k}'\left[ext{N}_2 ext{O}_5
 ight] ext{k}$ and $ext{k}'$ are related as:

(2) 2k = k'

(3) k = 2k'

- (4) k = 4k'
- Q51. Shapes of certain interhalogen compounds are stated below. Which one of them is not correctly stated?
 - (1) IF₇: pentagonal bipyramid

(2) BrF₅: trigonal bipyramid

(3) BrF₃: planar T-shaped

- (4) ICI₃: planar dimeric
- Q52. Which of the following name formula combinations is not correct? _____ mathongo
 - (1) K_2 [Pt(CN)₄] Potassium tetracyanoplatinate
- (2) $[Mn(CN)_5]^{2-}$ Pentacyanomagnate (II) ion
- (3) K $[Cr(NH_3)_2Cl_4]$ Potassium diammine tetrachlorochromate (III)
- (4) $[Co(NH_3)_4 (H_2O)I]SO_4$ Magnetron value.
- Q53. Consider the coordination compound, [Co(NH₃)₆]Cl₃. In the formation of this complex, the species which acts as the Lewis acid is:
 - (1) $[Co(NH_3)_{\epsilon}]^{3+}$

(2) Cl⁻

(3) Co^{3+}

- (4) NH₃
- Q54. Chlorobenzne reacts with trichloro acetaldehyde in the presence of $\mathrm{H}_2\mathrm{SO}_4$

The major product formed is:

- Q55. Tischenko reaction is a modification of:
 - (1) Aldol condensation

(2) Claisen condensation

(3) Cannizzaro reaction

(4) Pinacol-pinacolon reaction

Q56. Which one of the following statements is not correct?

- moth (1) Alcohols are weaker acids than water
- following RCH₂OH > R₂CHOH > R₃COH
- (3) Carbon-oxygen bond length in methanol, CH_3OH is shorter than that of C-O bond length in phenol.
- $^\prime$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mat The bond angle

The following reaction is known as:

(1) Perkin reaction

(2) Gatterman-Koch Formylation _____ mothongo

(3) Kolbe's reaction

(4) Gattermann reaction

Q58. An organic compound A, C₅H₈O; reacts with H₂O, NH₃ and CH₃COOH as described below:

mathongo /// mathanao

(1) $CH_3CH = C - CHO$

(3)
$$CH_3 - CH_2 - C = C = O$$
 (4) $CH_3 - CH_2 - C - C = O$ mathongo /// mathongo // mathong

Q59. Complete reduction of benzene-diazonium chloride with Zn/HCl gives:

(1) Aniline

(2) Phenylhydrazine

(3) Azobenzene

(4) Hydrazobenzene

Q60. Which one of the following is used as Antihistamine?

(1) Omeprazole

(2) Chloranphenicol

(3) Diphenhydramine

(4) Norethindrone

Q61. If α and β are roots of the equation, $x^2 - 4\sqrt{2}kx + 2e^{4\ln k} - 1 = 0$ for some k, and $\alpha^2 + \beta^2 = 66$, then $\alpha^3 + \beta^3$ is equal to: mathongo /// math

(1) $248\sqrt{2}$

Q62. If z_1, z_2 and z_3, z_4 are 2 pairs of complex conjugate numbers, then $\arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right)$ equals:

(1)0

(2) $\frac{\pi}{2}$

 $(3) \frac{3\pi}{2}$

 $(4) \pi$

Q63. An eigh	ht digit number divis	sible by 9 is to	be formed us	sing digits from	0 to 9 without rep	eating the digits. T	The // mo
number	r of ways in which th	his can be done	e is:				

Q65. The sum of the first 20 terms common between the series
$$3 + 7 + 11 + 15 +$$
 and $1 + 6 + 11 + 16 + \dots$ is (1) 4000 (2) 4020

$$(1) \frac{\frac{(1000)!}{(50)(!95\varphi!}}{(3) \frac{(1001)!}{(51)(!95\phi!}}$$

$$(3) \frac{\frac{(1001)!}{(51)(!95\phi!}}{(51)(!95\phi!)}$$

$$(4) \frac{\frac{(1001)!}{(50)(!95)!}}{(50)(!95)!}$$

Q67. If
$$2\cos\theta + \sin\theta = 1$$
 $(\theta \neq \frac{\pi}{2})$, then $7\cos\theta + 6\sin\theta$ is equal to:

Q68. The base of an equilateral triangle is along the line given by
$$3x + 4y = 9$$
. If a vertex of the triangle is $(1, 2)$, much then the length of a side of the triangle is:

(1)
$$\frac{2\sqrt{3}}{15}$$
 (2) $\frac{4\sqrt{3}}{15}$ math (3) $\frac{4\sqrt{3}}{5}$ /// mathongo // mathongo //

Q69. The set of all real values of
$$\lambda$$
 for which exactly two common tangents can be drawn to the circles

$$x^2 + y^2 - 4x - 4y + 6 = 0$$
 and $x^2 + y^2 - 10x - 10y + \lambda = 0$ is the interval: 100 mothon with mo

$$(1) (12, 32) (2) (18, 42) (4) (18, 48)$$

Q70. Let
$$L_1$$
 be the length of the common chord of the curves $x^2 + y^2 = 9$ and $y^2 = 8x$, and L_2 be the length of the latus rectum of $y^2 = 8x$, then:

(1)
$$L_1 > L_2$$
 (2) $L_1 = L_2$ (2) $L_1 = L_2$ (3) $L_1 < L_2$ mathongo /// mathongo // matho

Q71. A stair-case of length
$$l$$
 rests against a vertical wall and a floor of a room. Let P be a point on the stair-case, nearer to its end on the wall, that divides its length in the ratio $1:2$. If the staircase begins to slide on the floor,

nearer to its end on the wall, that divides its length in the ratio 1 : 2. If the staircase begins to slide on the floor, then the locus of P is:

(1) an ellipse of eccentricity
$$\frac{1}{2}$$
(2) an ellipse of eccentricity $\frac{\sqrt{3}}{2}$

(1) an ellipse of eccentricity
$$\frac{1}{2}$$
 (2) an ellipse of eccentricity $\frac{\sqrt{3}}{2}$ (3) a circle of radius $\frac{1}{2}$ (4) a circle of radius $\frac{\sqrt{3}}{2}l$

Q72. Let P(3 sec
$$\theta$$
, 2 tan θ) and Q(3 sec ϕ , 2 tan ϕ) where $\theta + \phi = \frac{\pi}{2}$, be two distinct points on the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$. Then the ordinate of the point of intersection of the normals at P and Q is:

$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$
. Then the ordinate of the point of intersection of the normals at P and Q is:
$$(1) \frac{11}{3}$$

$$(2) - \frac{11}{3}$$

Q73. If
$$\lim_{x\to 2} \frac{\tan(x-2\{x^2+k+2x-2k\})}{x^2-4x+4} = 5$$
, then k is equal to:

Q78. Let A be a 3×3 matrix such that

Question Paper MathonGo

///. math(1) 0		/// (2):1hongo		
(3) 2		(4) 3		

- **Q74.** The proposition $\sim (p \lor \sim q) \lor \sim (p \lor q)$ is logically equivalent to:
- $(4) \sim q \, \text{ngo}$ /// mathongo /// mathongo $math(3) \sim p$
- Q75. Two ships A and B are sailing straight away from a fixed point O along routes such that $\angle AOB$ is always 120° At a certain instance, OA = 8 km, OB = 6 km and the ship A is sailing at the rate of 20 km/hr while the ship B sailing at the rate of 30 km/hr. Then the distance between A and B is changing at the rate (in km/hr):
 - mathongo /// mathongo /// $(2)\frac{260}{37}$ ongo /// mathongo /// mathongo
- Q76. The angle of elevation of the top of a vertical tower from a point P on the horizontal ground was observed to be α . After moving a distance 2 metres from P towards the foot of the tower, the angle of elevation changes to morn β . Then the height (in metres) of the tower is:
- $(1) \frac{2\sin\alpha\sin\beta}{}$
- Q77. Let A(2,3,5), B(-1,3,2) and $C(\lambda,5,\mu)$ be the vertices of a $\triangle ABC$. If the median through A is equally inclined to the coordinate axes, then:
 - (1) $5\lambda 8\mu = 0$ (2) $8\lambda - 5\mu = 0$ (3) $10\lambda - 7\mu = 0$ mathona (4) $7\lambda - 10\mu = 0$ mathona (7) mathona

- - Q79. Let for $i = 1, 2, 3, p_i(x)$ be a polynomial of degree 2 in $x, p'_i(x)$ and $p''_i(x)$ be the first and second order math derivatives of $p_i(x)$ respectively. Let, though w mathong w mathong w mathong w
- mathongo /// math
 - and $B(x) = [A(x)]^T A(x)$. Then determinant of B(x):

 - (1) is a polynomial of degree 6 in x. (2) is a polynomial of degree 3 in x. (3) is a polynomial of degree 2 in x. (4) does not depend on x.
 - **Q80.** Let f be an odd function defined on the set of real numbers such that for $x \ge 0$, $f(x) = 3\sin x + 4\cos x$. Then f(x) at $x = -\frac{11\pi}{6}$ is equal to:

(1)	3	_	$2\sqrt{3}$
(1)	1 5	+	$2\sqrt{3}$

$$(3) \frac{3}{2} - 2\sqrt{3}$$

math(1)
$$\frac{3}{2} + 2\sqrt{3}$$
 mathongo /// mathongo /// (2) $+\frac{3}{2} + 2\sqrt{3}$ // mathongo /// math

$$(4) - \frac{3}{2} - 2\sqrt{3}$$

Q81. Let $f(x) = x|x|, g(x) = \sin x$ and $h(x) = (g \circ f)(x)$. Then and a mathon of mathon of mathon of mathon of the mathon of

- (1) h(x) is not differentiable at x = 0.
- (2) h(x) is differentiable at x = 0, but h'(x) is not

continuous at x = 0 though we mathon when y = 0

- (3) h'(x) is continuous at x = 0 but it is not
- (4) h'(x) is differentiable at x = 0

differentiable at x = 0

Q82. For the curve $y = 3\sin\theta\cos\theta$, $x = e^{\theta}\sin\theta$, $0 \le \theta \le \pi$, the tangent is parallel to x-axis when θ is:

$$(2)^{\frac{7}{4}}$$

$$(4) \frac{\pi}{6}$$

Q83. The volume of the largest possible right circular cylinder that can be inscribed in a sphere of radius $=\sqrt{3}$ is:

 $(1) \frac{4}{3} \sqrt{3} \pi$

(2)
$$\frac{8}{3}\sqrt{3}\pi$$

Q84. The integral $\int x \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) dx (x>0)$ is equal to:

$$(1) -x + (1+x^2) \tan^{-1} x + c$$

$$(3) -x + (1+x^2) \cot^{-1} x + \epsilon$$

(4)
$$x - (1 + x^2) \tan^{-1} x + c$$

Q85. If for $n \ge 1$, $P_n = \int_1^e (\log x^n) dx$, then $P_{10} - 90P_8$ is equal to:

- math(3)=9e //. mathongo //. mathongo //. (4) 10 ongo //. mathongo //. mathongo //. mathongo

- math (3) = 4 /// mathongo //

Q87. If $|\vec{c}|^2 = 60$ and $\vec{c} \times (\hat{i} + 2\hat{j} + 5\hat{k}) = \overrightarrow{0}$, then a value of $\vec{c} \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is:

(1) $4\sqrt{2}$

(3) 24 (4) $12\sqrt{2}$ mathongo // mathongo (1) (1, -2, 5) (2) (0, 2) (3) (0, 2) (4) (-1, -3, 0) mathongo /// mathongo

Q89. A set S contains 7 elements. A non-empty subset A of S and an element x of S are chosen at random. Then the probability that $x \in A$ is:

- $\begin{array}{c} (1) \frac{1}{2} \\ (3) \frac{63}{129} \end{array}$ mathongo $\begin{array}{c} (2) \frac{64}{127} \\ (4) \frac{31}{129} \end{array}$ mathongo $\begin{array}{c} (2) \frac{64}{127} \\ (4) \frac{31}{129} \end{array}$ mathongo $\begin{array}{c} (2) \frac{64}{127} \\ (4) \frac{31}{129} \end{array}$

Q90. If X has a binomial distribution, B(n, p) with parameters n and p such that P(X = 2) = P(X = 3), then E(X), the mean of variable X, is

(1) 2 - p

 $(3) \frac{p}{2}$

 $(4)^{\frac{p}{2}}$

ANSWER	R KEYS	madia go	///.	marina go	///.	initial (0 ///.	mather go	///.	unumor go
1. (3) _{nathor}	2. (3)//	3. (1)	14.	4. (2)	5. (3	mathon 6	(1) ///	ma7.(1)go	/4.	8. (2) hongo
9. (2)	10. (1)	11. (2)		12. (3)	13. ((3) 1	4. (1)	15. (4)		16. (2)
17. (3) athor	18. (1)	19. (4)		20. (2) 000	21. ((1)nathon 2 :	2. (1)	23. (3)		24. (4)
25. (1)	26. (4)	27. (2)		28. (4)	29. ((2) 3	0. (4)	31. (4)		32. (3)
33. (1)	34. (3)	35. (3)		36. (2)	37. ((2) 3	8. (1)	39. (2)		40. (3)
41. (4)	42. (4)	43. (3)		44. (3)	45. ($(3)_{\text{nathon}}$	6. (4)	47. (4)		48. (4)
49. (4)	50. (2)	51. (2)		52. (2)	53. ((1) 5	4. (3)	55. (3)		56. (3)
57. (4) athor	58. (3)	59. (1)		60. (3) ongo	61. ((4)nathon 6	2. (1)//	63. (4)		64. (3) ongo
65. (2)	66. (4)	67. (4)		68. (2)	69. ((2) 7	0. (3)	71. (2)		72. (4)
73. (4)	74. (3)	75. (1)		76. (1)	77. (7 (3)	8. (1)	79. (1)		80. (3)
81. (3) 89. (2)	82. (3) 90. (2)	83. (3)		84. (1)	85. ((3) 8 mathons	6. (4)	87. (4)		88. (2)
` '	` ′									