Q	1. The position co-ordinates of a particle moving in a 3	D coordinate system	is gi	ven by		
	$x = a\cos\omega t$					
	$y = a \sin \omega t$ mothongo mothongo and $z = a \omega t$					
	The speed of the particle is:					
	$(1)\sqrt{2} a\omega$	(2) $a\omega$				
	(3) 2aa	(4) $\sqrt{3} a\omega$				
	Nationgo /// mathongo /// mathongo	72. Muthongo				
Q	2. Expression for time in terms of G (universal gravitates)	ional constant), h (Pl	lanck	constant) and o	c (spe	ed of light) is
	proportional to: // mathongo // mathongo	/// mathongo				
	$(1) \sqrt{\frac{Gh}{c^3}}$	(2) $\sqrt{\frac{hc^5}{G}}$				
	(3) $\sqrt{\frac{Gh}{c^5}}$ mothongo mothongo	(4) $\sqrt{\frac{c^3}{Gh}}$ thouse				
0	3. In a car race on straight road, car A takes a time t less	es than car R at the fi	nich :	and nacces finis	hina	noint with a
V	speed v more than that of car B . Both the cars start f			-	_	
			Tur Co		itiOii	
	respectively. Then v is equal to:					
	$(1) \frac{2a_1a_2}{a_1+a_2}t$	$(2) \frac{a_1 + a_2}{2} t$				
	(3) $\sqrt{a_1 a_2} t$ mathongo mathongo	$(4) \sqrt{2a_1a_2}t$				
Q	4. A mass of 10 kg is suspended vertically by a rope fr	om the roof. When a	horiz	ontal force is a	pplie	d on the rope
	at some point, the rope deviated at an angle of 45° a	the roof point. If the	susp	ended mass is	at equ	ilibrium, the
	magnitude of the force applied is $(g = 10 \text{ m s}^{-2})$	•	•		•	
	(1) 100 N // mathongo // mathongo	$(2) \ 200 \ N$				
	(3) 140 <i>N</i>	(4) $70 N$				
	mathongo /// mathongo /// mathongo	///. mathongo		mathongo		
Q	5. A force acts on a 2 kg object so that its position is g	ven as a function of t	time	$as x = 3t^2 + 5$	Wha	t is the work
	done by this force in first 5 seconds?					
	(1) 875 J	(2) 850 J				
	(3) 950 J	(4) 900 J				
0	mathongo // mathongo // mathongo			mathongo		
Q	6. A rod of length 50 cm is pivoted at one end. It is raise			_		
	shown and released from rest. Its angular speed w	nen it passes inroug	n tne	norizoniai (in	raa	s -) will be
	$\left(g=10~ms^{-2} ight)$					
	mathongo /// mathongo mathongo					
	mathongo /// mathongo					
	mathongo mathongo mathongo					
	30°					
	m(mathenge math					

JEE Main Previous Year Paper MathonGo

Question Paper

(1) $\frac{\sqrt{20}}{3}$ ngo /// mathongo /// mathongo (2) $\sqrt{30}$ athongo /// mathongo /// mathongo (3) $\sqrt{\frac{30}{3}}$

Q7. The energy required to take a satellite to a height h above the Earth surface (radius of Earth = 6.4×10^3 km) is E_1 , and the kinetic energy required for the satellite to be in a circular orbit at this height is E_2 . The value of hfor which E_1 and E_2 are equal, is

(1) $1.28 \times 10^4 km$

mathongo (2) $6.4 imes 10^3 km$ (4) $1.6 imes 10^3 km$

(3) $3.2 \times 10^3 km$

Q8. The top of a water tank is open to air and its water level is maintained. It is giving out 0.74 m³ water per minute through a circular opening of 2 cm radius in its wall. The depth of the centre of the opening from the level of water in the tank is close to:

(1) 2.9 m

(2) 4.8 m

(3) 6.0 m

/// mathongo /// mathongo (4) 9.6 m

Q9. Two carnot engines A and B are operated in series. The first one, A, receives heat at $T_1 (= 600K)$ and rejects to a reservoir at temperature T_2 . The second engine B receives heat rejected by the first engine and, in turn, rejects to a heat reservoir at $T_3 (= 400K)$. Calculate the temperature T_2 if the work outputs of the two engines are equal:ongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(1) 500 K

 $(2)\ 400\ K$

 $(3)\ 300\ K$

mathongo /// mathongo (4) 600 Kinongo /// mathongo ///

Q10. A 15 g mass of nitrogen gas is enclosed in a vessel at a temperature, 27°C. The amount of heat transferred to the gas, so that R. M. S. velocity of molecules is doubled, is about.

 $\begin{bmatrix} R = 8.3 \text{ J (K mole)}^{-1} \end{bmatrix}$ atthore we mathone mathone

(1) 14 kJ

(2) 10 kJ mathongo /// mathongo

(3) 6 kJ

(4) 0 .9 kJ

Q11. A particle is executing simple harmonic motion (SHM) of amplitude A, along the x -axis, about x=0. When its potential Energy (PE) equal kinetic energy (KE), the position of the particle will be:

(1) A

(2) $\frac{A}{2}$

(4) $\frac{A}{\sqrt{2}}$ mathongo /// mathongo

Q12. A rod of mass M and length 2L is suspended at its middle by a wire. It exhibits torsional oscillations. If two masses, each of mass m, are attached at a distance L/2 from its centre on both sides, it reduces the oscillation frequency by 20%. The value of ratio m/M is close to

(1) 0.17

o ///. mathongo ///. mathongo (2) 0.77athongo ///. mathongo ///. mathongo

(3) 0.57

(4) 0.37

Q13. A musician using an open flute of length 50 cm produces second harmonic sound waves. A person runs towards the musician from another end of a hall at a speed of 10 km h⁻¹. If the wave speed is 330 m s⁻¹, the frequency heard by the running person shall be close to

(1) 333 Hz

(2) 500 Hz

(3) 666 Hz

(4) 753 Hz ongo /// mathongo /// mathongo

JEE Main Previous Year Paper MathonGo

Question Paper

- **Q14.** Charge is distributed within a sphere of radius R with a volume charge density $\rho(r) = \frac{A}{r^2} e^{-\frac{2r}{a}}$, where A and a are constants. If Q is the total charge of this charge distribution, the radius R is:
 - (1) $\frac{a}{2}\log\left(\frac{1}{1-\frac{Q}{2\pi aA}}\right)$ mathongo /// mathongo (2) $a\log\left(\frac{1}{1-\frac{Q}{2\pi aA}}\right)$ // mathongo /// mathongo

- $(3) a \log \left(1 \frac{Q}{2\pi aA}\right) \tag{4} \frac{a}{2} \log \left(1 \frac{Q}{2\pi aA}\right)$
- Q15. Two point charges $q_1\Big(\sqrt{10}~\mu\mathrm{C}\Big)$ and $q_2(-25~\mu\mathrm{C})$ are placed on the x -axis at $x=1~\mathrm{m}$ and $x=4~\mathrm{m}$ respectively. The electric field (in V/m) at a point y = 3 m on y-axis is,

 $\left[ext{Take } rac{1}{4\pi\epsilon_0} = 9 imes 10^9 \ ext{N m}^2 ext{C}^{-2}
ight]$ (1) $\left(-81 \ \hat{ ext{i}} + 81 \ \hat{ ext{j}}
ight) imes 10^2$

- $(1) \left(-81 \,\hat{\mathbf{i}} + 81 \,\hat{\mathbf{j}} \right) \times 10^{2}$ $(2) \left(81 \,\hat{\mathbf{i}} 81 \,\hat{\mathbf{j}} \right) \times 10^{2}$ $(3) \left(-63 \,\hat{\mathbf{i}} + 27 \,\hat{\mathbf{j}} \right) \times 10^{2}$ $(4) \left(63 \hat{\mathbf{i}} 27 \hat{\mathbf{j}} \right) \times 10^{2}$

- Q16. A parallel plate capacitor with square plates is filled with four dielectrics of dielectric constants K_1, K_2, K_3, K_4 arranged as shown in the figure. The effective dielectric constant K will be:

- (1) $K = \left(\frac{K_1 K_2}{K_1 + K_2} + \frac{K_3 \cdot K_4}{K_3 + K_4}\right)$ (2) $K = \frac{(K_1 + K_2)(K_3 + K_4)}{2(K_1 + K_2 + K_3 + K_4)}$ (4) $K = \frac{(K_1 + K_2)(K_3 + K_4)}{K_1 + K_2 + K_3 + K_4}$

- Q17. A carbon resistance has a following colour code. What is the value of the resistance?

(1) $6.4 \ M\Omega \pm 5\%$

- (2) $64 k\Omega \pm 10\%$
- (3) $530~k\Omega\pm5\%$ mathongo /// mathongo
- (4) $5.3~M\Omega\pm5\%$ mathona mathona
- Q18. In the given circuit the internal resistance of the 18V cell is negligible. If $R_1 = 400 \Omega$, $R_3 = 100 \Omega$ and $R_4 = 500 \Omega$ and the reading of an ideal voltmeter across R_4 is 5 V, then the value of R_2 will be:

/// mathongo /// mathongo /// mathongo /// mathongo $(1) 550 \Omega$ (3) 450 Ω $(4) 230 \Omega$

Q19. A particle having the same charge as of electron moves in a circular path of radius 0.5 cm under the influence of a magnetic field of 0.5 T. If an electric field of 100 V/m makes it to move in a straight path, then the mass of the particle is (Given charge of electron = $1.6 \times 10^{-19} C$)

(1) $9.1 \times 10^{-31} \ kg$ (2) $1.6 \times 10^{-27} \ kg$ (3) $2.0 \times 10^{-24} \ kg$ mathons (4) $1.6 \times 10^{-19} \ kg$ (2) $1.6 \times 10^{-27} \ kg$

Q20. One of the two identical conducting wires of length L is bent in the form of a circular loop and the other one into a circular coil of N identical turns. If the same current is passed in both, the ratio of the magnetic field at the centre of the loop (B_L) to that at the centre of the coil (B_C) , i.e. $\frac{B_L}{B_C}$ will be

 $(1) \frac{1}{N^2}$

(3) N

(4) N^2

Q21. A power transmission line feeds input power at 2300 V to a step down transformer with its primary windings having 4000 turns. The output power is delivered at 230 V by the transformer. If the current in the primary of the transformer is 5 A and its efficiency is 90 %, the output current would be:

(1) 35 A

/// mathongo (2) 25 A mathongo /// mathongo

(3) 50 A

(4) 45 A

Q22. A series AC circuit containing an inductor (20 mH), a capacitor (120 μ F) and a resistor (60 Ω) is driven by an AC source of 24 V/50 Hz. The energy dissipated in the circuit in 60 s is:

(1) $5.17 \times 10^2 \text{ J}$

mathona (2) $3.39 \times 10^3 \,\mathrm{J}$

(3) $2.26 \times 10^3 \text{ J}$

(4) $5.65 \times 10^2 \text{ J}$

Q23. The energy associated with electric field is (U_E) and with magnetic field is (U_B) for an electromagnetic wave in free space. Then:

(1) $U_E > U_B$

 $(2) U_E = U_B$

(3) $U_E = \frac{U_B}{2}$

(4) $U_E < U_B$

Q24. Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror (M_1) and parallel to the second mirror (M_2) is finally reflected from the second mirror (M_2) and parallel to the first mirror (M_1) . The angle between the two mirrors will be:

 $(3) 90^{\circ}$

 $^{\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo

Q25. In a young's double slit experiment, the slits are placed 0.320 mm apart. Light of wavelength $\lambda = 500 \ nm$ is incident on the slits. The total number of bright fringes that are observed in the angular range $-30^o \le \theta \le 30^o$

(1) 321

///. mathongo

(3)320

(4) 640

Q26. The magnetic field associated with a light wave is given, at the origin, by

 $B = B_0 \left[\sin(3.14 \times 10^7) ct + \sin(6.28 \times 10^7) ct \right]$. If this light falls on a silver plate having a work function of

4.7 eV, what will be the maximum kinetic energy of the photoelectrons? // mathongo $(c = 3 \times 10^8 \,\mathrm{m\,s^{-1}}, h = 6.6 \times 10^{-34} \,\mathrm{J\,s})$

- (1) 6 .82 eV
- mathongo /// mathongo (2) 7.72 teVngo /// mathongo /// mathongo
- (3) 12.5 eV

- (4) 8.52 eV
- Q27. At a given instant, say t=0, two radioactive substance A and B have equal activities. The ratio $\frac{R_B}{R_A}$ of their activities after time t itself decays with time t as e^{-3t} . If the half-life of A is ln2, the half-life of B is:
 - (1) 2ln2

(2) 4ln2

(3) $\frac{\ln 2}{4}$

- **Q28.** Ge and Si diodes start conducting at 0.3 V and 0.7 V respectively. In the following figure if Ge diode connection are reversed, the value of V_0 changes by: (assume that the Ge diode has large breakdown voltage)

(1) 0.8 V

mathongo (2) 0.4 V mathongo (4) 0.6 V mathongo (4) 0.6 V mathongo

(3) 0.2 V

- **Q29.** In a communication system operating at wavelength 800 nm, only one percent of source frequency is available as signal bandwidth. The number of channels accommodated for transmitting TV signals of band width
 - 6 MHz are (Take velocity of light $c=3\times 10^8~m/s,~h=6.6\times 10^{-34}~J\text{-}s$)
 - $(1) 6.25 \times 10^5$

(2) 4.87×10^5

 $(3) 3.75 \times 10^6$

- $(4) 3.86 \times 10^6$
- Q30. The pitch and the number of divisions, on the circular scale, for a given screw gauge are 0.5 mm and 100 respectively. When the screw gauge is fully tightened without any object, the zero of its circular scale lies 3 divisions below the mean line.
 - The readings of the main scale and the circular scale, for a thin sheet, are 5.5 mm and 48 respectively, the thickness of this sheet is:
 - (1) 5.755 mm
- mathongo /// mathongo (2) $5.740 \, mm$ go /// mathongo /// mathongo
- (3) 5.725 mm

- (4) 5.950 mm
- Q31. For the following reaction, the mass of water produced from 445 g of $C_{57}H_{110}O_6$ is:
 - $2 \text{ C}_{57}\text{H}_{110}\text{O}_6(\text{s}) + 163\text{O}_2(\text{g}) \rightarrow 114 \text{ CO}_2(\text{g}) + 110\text{H}_2\text{O}(\text{l})$
 - (1) 490 g

(2) 890 g hongo /// mathongo ///

(3) 445 g

- (4) 495 g
- Q32. Which of the following combination of statements is true regarding the interpretation of the atomic orbitals?
 - (A) An electron in an orbital of high angular momentum stays away from the nucleus than an electron in the orbital of lower angular momentum.

JEE Main Previous Year Paper MathonGo

Question Paper

- (B) For a given value of the principal quantum number, the size of the orbit is inversely proportional to the azimuthal quantum number.
- (C) According to wave mechanics, the ground state angular momentum is equal to $\frac{h}{2\pi}$.
- (D) The plot of ψ Vs r for various azimuthal quantum numbers, shows peak shifting towards higher r value.
- (1) (B), (C)
- mathongo (2) (A), (B)
- (3) (A), (C)

- Q33. When the first electron gain enthalpy (ΔH_{eg}) of oxygen is -141~kJ/mol, its second electron gain enthalpy is:
 - (1) A positive value athongo /// mathongo
- (2) Almost the same as that of the first
- (3) Negative, but less negative than the first
- (4) A more negative value than the first
- Q34. In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic? (1) $O_2 \rightarrow O_2^+$ mathongo /// mathongo (2) $NO \rightarrow NO^+$ /// mathongo /// mathongo

(3) $O_2 \to O_2^-$

- (4) $N_2
 ightarrow N_2^+$
- Q35. The entropy change associated with the conversion of 1 kg of ice at 273 K to water vapours at 383 K is: (Specific heat of water liquid and water vapour are $4.2~kJ~K^-$ and $2.0~kJ~K^{-1}kg^{-1}$; heat of liquid fusion and vaporization of water are $334 \ kJ \ kg^{-1}$ and $2491 \ kJ \ kg^{-1}$, respectively). (log
 - $273 = 2.436, \log 373 = 2.572, \log 383 = 2.583$)
 - (1) $9.26 \ kJ \ kg^{-1}K^{-1}$

(2) $2.64 \ kJ \ kg^{-1}K^{-1}$

(3) $8.49 \ kJ \ kg^{-1}K^{-1}$

- (4) $7.90 \ kJ \ kg^{-1}K^{-1}$ mathongo
- Q36. The temporary hardness of water is due to:
 - (1) Na₂ SO₄

(2) NaCl

(3) CaCl₂

- $(4) \operatorname{Ca}(HCO_3)_2$
- Q37. The metal that forms nitride by reacting directly with N_2 of air is:
 - (1) Li

(2) Rb

- m(3) Cs_{1} go_{1} go_{2} go_{3} go_{4} go_{2} go_{2} go_{3} go_{4} go_{2} go_{2} go_{3} go_{4} go_{2} go_{2} go_{3} go_{4} go_{2} go_{2} go_{2} go_{3} go_{4} go_{2} go_{2} go_{2} go_{3} go_{2} go_{2} go_{3} go_{2} go_{3} go_{2} go_{3} go_{2} go_{3} go_{2} go_{2} go_{3} go_{3} go_{2} go_{3} go_{2} go_{3} go_{3} go_{3} go_{2} go_{3} $go_$
- Q38. Which of the following compounds is not aromatic?

Question Paper

JEE Main Previous Year Paper MathonGo

Q39. The pH of rain water is approximately: nothongo // mothongo // mothongo // mothongo

(1) 5.6

(2) 6.5

(3) 7.5

///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q40. Which of the following conditions in drinking water causes methemoglobinemia?

(1) > 50 ppm of nitrate

(2) > 50 ppm of chloride

(3) > 100 ppm of sulphate

(4) > 50 ppm of lead

Q41. At $100^{\circ}C$, copper (Cu) has FCC unit cell structure with cell edge length of $x \, \text{Å}$. What is the approximate density of Cu (in $g cm^{-3}$) at this temperature?

[Atomic Mass of Cu = 63.55 u]

- $(1) \frac{105}{x^3}$ $(3) \frac{422}{x^3}$
- mathongo /// mathongo $\frac{(2)}{x^3}$ athongo /// mathongo /// mathongo /// mathongo

Q42. A solution containing 62 g ethylene glycol in 250 g water is cooled to -10° C. If K_f for water is 1.86 K kg mol⁻¹, the amount of water (in g) separated as ice is:

- (1) 48 ngo /// mathongo /// mathongo /// mathongo /// mathongo
- (3) 16

Q43. If the standard electrode potential for a cell is 2 V at 300 K, the equilibrium constant (K) for the reaction.

$$Zn(s) + Cu^{2+}(aq)
ightleftharpoons Zn^{2+}(aq) + Cu(s)$$

at 300 K is approximately: 30 // mothongo // mothongo // mothongo

$$(R = 8 JK^{-1}mol^{-1}, F = 96000 C mol^{-1})$$

- $(1) e^{-160}$
- o ///. mathongo ///. mathongo (2) e^{-80} athongo ///. mathongo ///. mathongo
- (3) e^{160}

Q44. For the reaction, $2A + B \rightarrow$ products, when the concentration of A and B both were doubled, the rate of the reaction increased from 0.3 $mol L^{-1}s^{-1}$ to 2.4 $mol L^{-1}s^{-1}$. When the concentration of A alone is doubled, the rate increased from $0.3 \ mol \ L^{-1}s^{-1}$ to $0.6 \ mol \ L^{-1}s^{-1}$.

Which one of the following statements is correct?

- (1) Order of the reaction with respect to B is 2
- (2) Total order of the reaction is 4
- (3) Order of the reaction with respect to A is 2
- (4) Order of the reaction with respect to B is 1

Q45. Consider the following reversible chemical reactions:

$$A_2(g) + B_2(g) \stackrel{k_1}{\rightleftharpoons} 2AB(g)$$
(1) mathongo mathongo mathongo mathongo

$$6AB(g) \stackrel{k_2}{\rightleftharpoons} 3A_2(g) + 3B_2(g)$$
(2)

The relation between K_1 and K_2 is: mathongo /// mathongo /// mathongo ///

(1) $K_2 = K_1^{-3}$

- (2) $K_1K_2 = \frac{1}{3}$
- (3) $K_2 = K_1^3$ mathong (4) $K_1 K_2 = 3$ mathong (5) mathong

Q46. For coagulation of arsenious sulphide sol, which of the following salt solutions will be most effective?

- (1) Na_3PO_4 mathongo mathongo
- (2) NaCl nongo /// mathongo /// mathongo

(3) $AlCl_3$

(4) $BaCl_2$

Q47. The correct match between Item I and Item II is: Item I

- (A) Benzaldehyde nathongo /// mathongo
- (B) Alumina
- (C) Acetonitrile mathongo // mathongo
- $(1) (A) \to (P); (B) \to (R); (C) \to (Q)$

Item II

- (P) Mobile phase // mathongo /// mathongo
- (Q) Adsorbent
- (R) Adsorbate
- $(2) (A) \to (R); (B) \to (Q); (C) \to (P)$
- $(3)\ (A)
 ightarrow (Q); (B)
 ightarrow (P); (C)
 ightarrow (R) ext{ athongo}$ $(4)\ (A)
 ightarrow (Q); (B)
 ightarrow (R); (C)
 ightarrow (P)$

Q48. The correct statement regarding the given Ellingham diagram is:

- Zn from ZnO .
- (3) At $800^{\circ}C$, Cu can be used for the extraction of Zn from ZnO
- (1) At $1400^{\circ}C$, Al can be used for the extraction of (2) At $500^{\circ}C$, coke can be used for the extraction of Zn from ZnO
 - (4) Coke cannot be used for the extraction of Cufrom Cu_2O

Q49. Good reducing nature of H_3PO_2 is attributed to the presence of:

- (1) One P-H bond thomas M mathonas
 - - (2) Two P OH bonds

- (3) Two P H bond

- (4) One P OH bond

Q50. The transition elements that has the lowest enthalpy of atomisation is:

(1)V

(3) Zn

(4) Cu

Q51. Homoleptic octahedral complexes of a metal ion M^{3+} with three monodentate ligands L_1 , L_2 and L_3 absorb wavelengths in the region of green, blue and red respectively. The increasing order of the ligand strength is:

Question Paper MathonGo

- M n(1) $L_3>L_1>L_2$ mathongo /// mathongo (2) $L_1>L_2>L_3$ /// mathongo /// mathongo

(3) $L_2 > L_1 > L_3$.

- (4) $L_3 > L_2 > L_1$.
- Q52. The complex that has highest crystal field splitting energy (Δ) , is:
 - (1) $K_3[Co(CN)_6]$

- (2) $\lceil Co(NH_3)_5Cl \rceil Cl_2$
- $(3) \left[Co(NH_3)_5(H_2O)\right]Cl_3$ mathons $(4) K_2[CoCl_4]$ mathons $(4) K_2[CoCl_4]$
- Q53. The major product of the following reaction is:
 - - mathongo ///. mathongo ///. mathongo ///. mathongo
- (1) CHihongo
- CH3thongo /// mathongo

- mothongcH3/// mathongo /// mathongo
- Q54. The products formed in the reaction of cumene with O₂ followed by treatment with dil HCl are:
- (1) nathongo ///. mathongo and CH₃ – OH
 - $_{\text{matl}}H_{3}C$ //. mathongo ///. mathongo ///. mathongo ///. mathongo

- OH mathongo /// mathongo OH

Q55. The major product formed in the	e following reaction is: // mathongo /// mathongo /// mathongo	
/// mathongo mathongo	O CH mathongo /// mathongo /// mathongo /// mathongo	
mathongo H ₃ C CH ₃ + mathongo mathongo mathongo	dilute NaOH mathongo /// mathongo /// mathongo	
/// mathongo Mathongo OH	mathongo (2) mathongo (2) mathongo (2) mathongo (3) mathongo (4) mathongo (4) mathongo (5) mathongo (6) mathongo (7) matho	
mathongo mathongo mathongo mathongo mathongo mathongo mathongo	mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo	
mathongo mathongo OH O	mathongo (4) matho	
mathongo H ₃ C mathongo mathongo	H H_3C	
	~	
	///. mathongo ///. mathongo ///. mathongo	
Q56. The test performed on compoun	d x and their inferences are:	
Q56. The test performed on compoun	d x and their inferences are: /// matho Inference mathongo /// mathongo /// mathongo	
Q56. The test performed on compoun	d x and their inferences are: /// matho Inference mathongo /// mathongo /// mathongo Coloured precipitate yellow	
Q56. The test performed on compound Test ongo Mathongo (a) 2, 4 - DNP test (b) Iodoform test mathongo (c) Azo-dye test	d x and their inferences are: // matho Inference mathongo // mathongo // mathongo Coloured precipitate yellow // matho Yellow precipitate // mathongo // mathongo No dye formation	
Q56. The test performed on compound Test ongo Mathongo (a) 2, 4 - DNP test (b) Iodoform test mathongo (c) Azo-dye test	d x and their inferences are: /// matho Inference mathongo // mathongo // mathongo Coloured precipitate yellow // matho Yellow precipitate ngo // mathongo // mathongo	
Q56. The test performed on compound Test mathonical (a) 2, 4 - DNP test (b) Iodoform test (c) Azo-dye test Compound /x/ is:	d x and their inferences are: // matho Inference mathongo // mathongo // mathongo Coloured precipitate yellow // matho Yellow precipitate // mathongo // mathongo No dye formation	
Q56. The test performed on compound Test ongo mathongo (a) 2, 4 - DNP test (b) Iodoform test mathongo (c) Azo-dye test Compound /x/ is: mathongo mathongo mathongo	d x and their inferences are: /// matho Inference mathongo // mathongo // mathongo Coloured precipitate yellow // matho Yellow precipitate // mathongo // mathongo No dye formation // mathongo // mathongo // mathongo // mathongo	
Q56. The test performed on compound Test ongo mathongo (a) 2, 4 - DNP test (b) Iodoform test mathongo (c) Azo-dye test Compound /x/ is: mathongo mathongo mathongo mathongo mathongo	d x and their inferences are: /// matho Inference mathongo /// mathongo /// mathongo Coloured precipitate yellow /// matho Yellow precipitate /// mathongo /// mathongo No dye formation /// mathongo /// mathon	
Q56. The test performed on compound "Test ongo "mathongo" (a) 2, 4 - DNP test "(b) Iodoform test mathongo (c) Azo-dye test "Compound /x/ is: mathongo "mathongo "mathongo" "mathongo "mathongo" "mathongo "mathongo"	d x and their inferences are: /// matho Inference mathongo /// mathongo /// mathongo Coloured precipitate yellow /// matho Yellow precipitate ngo /// mathongo /// mathongo No dye formation /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// m	
Q56. The test performed on compound Test ongo	d x and their inferences are: /// matho Inference mathongo /// mathon	

Question Paper

JEE Main Previous Year Paper MathonGo

Q58. The increasing basicity order of the following compounds is: athongo // mathongo // mathongo

(A) CH₃CH₂NH₂

(B) $CH_3 - CH_2 - NH - CH_2 - CH_3$

///. mathongo ///. mathongo ///. mathongo

mathongo (C) H_3C -N $-CH_3$ mathongo (7%) mathongo (1%) mathongo (1%) mathongo

 $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime\prime}$ ${
m CH}_3^{st}$ hongo $^{\prime\prime\prime\prime}$ mathongo $^{\prime\prime\prime\prime}$ mathongo $^{\prime\prime\prime\prime}$ mathongo

/// m(D)nPh -- Nath Hngo /// mathongo /// mathongo /// mathongo /// mathongo

(1) (D) < (C) < (B) < (A) (2) (D) < (C) < (A) < (B) (3) (A) < (B) < (C) < (D) (4) (A) < (B) < (D) < (C)

Q59. The major product of the following reaction is: ______ mathongo _____ mathongo _____ mathongo

mathong (ii) KOH (dilute) // mathongo /// mathongo /// mathongo CH_2CH_3

mathongo /// mathongo /// mathongo /// mathongo (1)

majhongo ///. mathongo ///.

CH3athongo /// mathongo

go /// mathongo /// mathongo // n(3)hongo /// Quthongo /// mathongo (4)

matNH30 /// mathongo // / math of

///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q60. The correct sequence of amino acids present in the tripeptide given below is:

OHnathongo /// mathongo /// mathongo (2) Leu - Ser - Thr

- (1) Val Ser Thr
- (3) Thr Ser Val (4) Thr - Ser - Leu

Q61. The number of all possible positive integral value of α for which the roots of the quadratic equation $6x^2 - 11x + \alpha = 0$ are rational numbers is:

mathongo /// mathongo (2) 3 mathongo /// mathongo /// mathongo (3) 4

Q62. If both the roots of the quadratic equation $x^2 - mx + 4 = 0$ are real and distinct and they lie in the interval (1, 5), then m lies in the interval:

Note: In the actual JEE paper interval was [1, 5]

- (1)(-5,-4)
- (2)(3,4)mathongo (4) (4, 5) hongo /// mathongo /// mathongo (3)(5, 6)
- **Q63.** Let z_0 be a root of quadratic equation, $x^2 + x + 1 = 0$. If $z = 3 + 6iz_0^{81} 3iz_0^{93}$, then arg (z) is equal to:
 - (1) ongo ///. mathongo ///. mathongo (2) $\frac{\pi}{4}$ mathongo ///. mathongo
 - $(3) \frac{\pi}{6}$ $(4) \frac{\pi}{3}$

Q64. The number of natural numbers less than 7000 which can be formed by using the digits 0, 1, 3, 7, 9 (repetition of digits allowed) is equal to:

- (2) 250(1) 375
- $(3)\ 374$ (4) 372

Q65. The sum of the following series $1+6+\frac{9(1^2+2^2+3^2)}{7}$

- (1)7520(2)7510

 - (3)7830(4)7820

Q66. Let a, b and c be the 7^{th} , 11^{th} and 13^{th} terms respectively of a non-constant A.P. . If these are also the three consecutive terms of a G.P., then $\frac{a}{c}$ is equal to: $\frac{a}{c}$ mathong $\frac{a}{c}$ mathong $\frac{a}{c}$ mathong $\frac{a}{c}$

- (1) 2
- $(2) \frac{7}{13}$ $(3)\frac{1}{2}$ ngo /// mathongo /// mathongo /// mathongo /// mathongo

(3) 15

n(1) 10 ngo /// mathongo /// mathongo /// mathongo /// mathongo

Q68. If $0 \le x < \frac{\pi}{2}$, then the number of values of x for which $\sin x - \sin 2x + \sin 3x = 0$, is:

(3) 2 ongo /// mathongo /// mathongo /// mathongo /// mathongo

Q69. Let S be the set of all triangles in the xy -plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in S has area 50 sq. units, then the number of elements in the set S is: /// mathongo /// mathongo /// mathongo

(3)9

(4) 18mathongo ///. mathongo ///. mathongo

Q70. Let the equations of two sides of a triangle be 3x - 2y + 6 = 0 and 4x + 5y - 20 = 0. If the orthocenter of this triangle is at (1, 1) then the equation of it's third side is: ______ mathongo _____ mathongo

(1) 122y + 26x + 1675 = 0

(2) 26x - 122y - 1675 = 0

(3) 26x + 61y + 1675 = 0

 $(4)\ 122y - 26x - 1675 = 0$

Q71. If the circles $x^2 + y^2 - 16x - 20y + 164 = r^2$ and $(x - 4)^2 + (y - 7)^2 = 36$ intersect at two distinct points, then:ongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(1) r > 11

 $(2) \ 0 < r < 1$

r(3) 1 < r < 11/ mathongo /// mathongo /// mathongo /// mathongo ///

Q72. Let A(4, -4) and B(9, 6) be points on the parabola, $y^2 = 4x$. Let C be chosen on the arc AOB of the parabola, where O is the origin, such that the area of $\triangle ACB$ is maximum. Then, the area (in sq. units) of $\triangle ACB$, is: /// mathongo /// mathongo /// mathongo /// mathongo

(1) 32

 $(3)\ 30^{\frac{1}{2}}$

 $(4) 31\frac{1}{4}$

Q73. A hyperbola has its centre at the origin, passes through the point (4, 2) and has transverse axis of length 4 along the x – axis. Then the eccentricity of the hyperbola is:

(1) $\sqrt{3}$

mathongo ///. mathongo ///. mathongo

Q74. For each $x \in R$, let [x] be the greatest integer less than or equal to x. Then $\lim_{\|x\| \to 1} \frac{x([x]+|x|)\sin[x]}{\|x\|}$ is equal to $x \to 0^-$ |x| mathongo /// mathongo (1) 1 ongo /// mathongo /// mathongo

 $(3) - \sin 1$

 $(4) \sin 1$

Q75. The logical statement $[\neg(\neg p \lor q) \lor (p \land r)] \land (\neg q \land r)$ is equivalent to

(1) $(\neg p \land \neg q) \land r$ (3) $(p \land \neg q) \lor r$ (2) $(p \land r) \land \neg q$ (4) $\neg p \lor r$

Q76. A data consists of n observations: x_1, x_2, \ldots, x_n . If $\sum_{i=1}^n (x_i+1)^2 = 9n$ and $\sum_{i=1}^n (x_i-1)^2 = 5n$, then the standard deviation of this data is

JEE Main Previous Year Paper

Question Paper

MathonGo

n(1) 5 ongo ///.		
------------------	--	--

- $\sqrt{7}$ athongo /// mathongo /// mathongo

(3) $\sqrt{5}$

(4) 2

- (2) Not invertible for any $t \in R$
- (1) Invertible only if $t = \pi$ (3) Invertible only if $t = \frac{\pi}{2}$ (4) Invertible for all $t \in R$ athongo
- Q78. If the system of linear equations x 4y + 7z = g; 3y 5z = h; -2x + 5y 9z = k is consistent, then:
 - (1) q + h + 2k = 0
- athongo /// mathongo /// mathongo /// mathongo
- (3) 2q + h + k = 0

- (4) g + h + k = 0
- Mathongo Ma

- (3) 0
- ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- **Q80.** Let $f:[0,1]\to R$ be such that f(xy)=f(x). f(y), for all $x,y\in[0,1]$, and $f(0)\neq 0$. If y=y(x) satisfies the differential equation, $\frac{dy}{dx} = f(x)$ with y(0) = 1 then $y(\frac{1}{4}) + y(\frac{3}{4})$ is equal to:
 - n(1).5ongo /// mathongo /// mathongo /// mathongo /// mathongo

(3) 3

- (4) 4
- **Q81.** Let $A=\{x\in R:x \text{ is not a positive integer}\}$. Define a function $f:A\to R$ as $f(x)=\frac{2x}{x-1}$, then f is:
 - (1) Injective but not surjective

(2) Not injective

(3) Surjective but not injective

- (4) Neither injective nor surjective
- **Q82.** Let f be a differentiable function from R to R such that $|f(x)-f(y)|\leq 2|x-y|^{3/2}$, for all $x,y\in R$. If f(0)=1 then $\int f^2(x)dx$ is equal to mathongo (1) mathongo (2) mathongo (2) mathongo (2) mathongo (2) mathongo

(3) 2

- $(4) \frac{1}{2}$
- wathongo wa

 - $10.1\frac{1}{6}$ mathongo /// mathongo (2) $\frac{1}{6\sqrt{2}}$ athongo /// mathongo /// mathongo

- **Q84.** If $f(x)=\int rac{(5x^8+7x^6)}{(x^2+1+2x^7)^2}dx$, $(x\geq 0)$, and f(0)=0, then the value of f(1) is $n(1)\frac{-1}{4}$ ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

- Q85. If $\int\limits_0^{\pi/3} \frac{\tan \theta}{\sqrt{2k \sec \theta}} d\theta = 1 \frac{1}{\sqrt{2}}, \ \left(k > 0\right)$, then the value of k is m_{1} $\frac{1}{2}$ $\frac{1}{2$

Question Paper

(3)6

JEE Main Previous Year Paper MathonGo

Q86. The area of the region $A = \{(x, y): 0 \le y \le x|x| + 1 \text{ and } -1 \le x \le 1\}$ in sq. units, is

- $n(3)\frac{1}{3}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q87. Let $\overrightarrow{a} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \sqrt{2}\widehat{\mathbf{k}}, \overrightarrow{b} = b_1\widehat{\mathbf{i}} + b_2\widehat{\mathbf{j}} + \sqrt{2}\widehat{\mathbf{k}}$ and $\overrightarrow{c} = 5\widehat{\mathbf{i}} + \widehat{\mathbf{j}} + \sqrt{2}\widehat{\mathbf{k}}$ be three vectors such that the projection vector of \overrightarrow{b} on \overrightarrow{a} is $|\overrightarrow{a}|$. If $\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then $|\overrightarrow{b}|$ is equal to:

- $11\sqrt{22}$ mathong with mathong (2) $\sqrt{32}$ thong with mathong with mathon with mat
- **Q88.** If the lines x=ay+b, z=cy+d and $x=a'z+b', \ y=c'\ z+d'$ are perpendicular, then

(4) 4

- (1) cc' + a + a' = 0(2) aa' + c + c' = 0(3) bb' + cc' + 1 = 0(4) ab' + bc' + 1 = 0(1) cc' + a + a' = 0
- **Q89.** The equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing
- the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is: (1) 3x + 2y - 3z = 0(2) x + 2y - 2z = 0(3) x - 2y + z = 0(4) 5x + 2y - 4z = 0
- (3) x 2u + z = 0
- **Q90.** An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red, is:
- (1) $\frac{21}{49}$ mathong (2) $\frac{26}{49}$ athong (3) $\frac{32}{49}$ mathong (4) $\frac{27}{49}$

ANSWER R	KEYS	nuito go	///.	go	///.	maning (///.	marina go	///.	go
1. (1) nothon 2	2. (3)//	3. (3)	/4/.	4. (1)	5. (4	l) _{mathon} 6.	(2) ///	7. (3)	/4/.	8. (2) hongo
	0. (2)	11. (4)		12. (4)	13. (. (1)	15. (4)		16. (1)
17. (3) athon 1	8. (2)	19. (3)		20. (1)	21. ((4) nathon 22	. (1)	23. (2)		24. (1) ongo
25. (2) 2	26. (2)	27. (3)		28. (2)	29. ((1) 30	. (3)	31. (4)		32. (4)
33. (1) 3	34. (2)	35. (1)		36. (4)	37.	(1) 38	. (4)	39. (1)		40. (1)
41. (3) athon 4	2. (2)	43. (3)		44. (1)	45. ((1) _{nathon} 46	. (3)	47. (2)		48. (1)
49. (3)	50. (3)	51. (3)		52. (1)	53. ((1) 54	. (3)	55. (4)		56. (3)
57. (2) athon 5	88. (2)	59. (2)		60. (1)ongo	61. ((2) 1 athor 62	. (4)//	63. (2)		64. (3) ongo
65. (4) 6	66. (4)	67. (3)		68. (3)	69. (70	. (2)	71. (3)		72. (4)
73. (3) 7	4. (3)	75. (2)		76. (3)	77. ((4) 78	. (3)	79. (2)		80. (3)
81. (1) 8	32. (2)	83. (2)		84. (3)	85. ((3) 86 mathon	. (2)	87. (3)		88. (2)
89. (3) 9	00. (3)									