Question Paper

JEE Main Previous Year Paper MathonGo

Q1. In the cube of side 'a' shown in the figure, the vector from the central point of the face ABOD to the central point of the face *BEFO* will be:

$$(1) \stackrel{?}{=} a \left(k - i \right)$$

$$(3) \stackrel{1}{=} a \left(\hat{i} - \hat{i} \right)$$

$$(3) \ \frac{1}{2} a \left(\hat{j} - \hat{i} \right)$$

$$(4) \ \frac{1}{2} a \left(\hat{j} - \hat{k} \right)$$

(1)410

- (3) 40
- /// mathongo /// mathongo (4) 640 athongo /// mathongo /// mathongo

(1) 1 : 16

(3) 1:4

(4) 1:8

Q4. A block of mass m is kept on a platform which starts from rest with a constant acceleration q/2 upwards, as shown in the figure. Work done by normal reaction on block in time t is

Q5. A piece of wood of mass $0.03 \ kg$ is dropped from the top of a $100 \ m$ height building. At the same time, a bullet of mass $0.02 \ kg$ is fired vertically upward, with a velocity $100 \ ms^{-1}$, from the ground. The bullet gets

JEE Main Previous Year Paper

MathonGo

Question Paper

	embedded in the wood. Then the maximum height to which the combined system reaches above the top of the building before falling below is: $(g = 10 \text{ ms}^{-2})$								
	(1) 10	,	(2) $20 m_{\text{max}}$						
	(1) 40 m mothongo (3) 10 m		$(4) \ 30 \ m$						
	(3) 10 111		(1) 00 m						
Q6	6. To mop-clean a floor, a cleaning	machine presses a ci	rcular mop of radius	R verti	cally down v	vith a	total force		
	F and rotates it with a constant a	ngular speed about i	ts axis. If the force F	'is distr	ributed unifor	rmly o	over the mop		
	and if coefficient of friction betw	een the mop and the	floor is μ , the torque	e, applie	ed by the mad	chine	on the mop		
	is:								
	(1) $2 \mu FR/3$ mathongo		(2) $\mu FR/3$ ongo						
	(3) $\mu FR/6$		(4) $\mu FR/2$						
07	7. A homogeneous solid cylindrical	roller of radius R as	nd mass M is pulled α	on a cri	cket pitch by	a hoi	rizontal		
	force. Assuming rolling without		•						
	$(1) \frac{F}{3 mR}$ mathongo	///. mathongo	$(2) \frac{3F}{2mR}$						
	$(3) \frac{2F}{3 m R}$		$(4) \frac{F}{2 m R}$						
	mathongo ///. mathongo		///. mathongo						
Q8	3. A satellite is moving with a cons	-			•		•		
	from the satellite such that it just	escapes from the gr	avitational pull of the	e earth.	At the time o	f ejec	tion, the		
	kinetic energy of the object is:								
	$(1) \frac{3}{2} m v^2$		(2) $m v^2$						
	$(1) \frac{3}{2} m v^2$		$\begin{array}{cccc} (2) \ m \ v^2 \\ (4) \ 2 \ m \ v^2 \end{array}$						
///. ///. Q9	$(1) \frac{3}{2} m v^2$			/// m	also leaking	out o	mathongo		
///. ///. Q9	$(1) \frac{3}{2} m v^2 $ $(3) \frac{1}{2} m v^2$	h flat bottom at the r	ate of $10^{-4}\ m^3 s^{-1}$. V				mathongo		
///. Q9	(1) $\frac{3}{2}mv^2$ (3) $\frac{1}{2}mv^2$ 2. Water flows into a large tank with area 1 cm^2 at its bottom. If the h	h flat bottom at the reight of the water in	ate of $10^{-4} m^3 s^{-1}$. We the tank remains stea	dy then	this height i				
///. ///. ///.	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ mathongo 2. Water flows into a large tank with area 1 cm^2 at its bottom. If the h	h flat bottom at the reight of the water in	ate of $10^{-4} m^3 s^{-1}$. We the tank remains stea	dy then			mathongo f a hole of jo		
	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ D. Water flows into a large tank with area $1 cm^2$ at its bottom. If the half (1) $5.1 cm$ (3) $2.9 cm$	h flat bottom at the reight of the water in	ate of $10^{-4} m^3 s^{-1}$. We the tank remains steat (2) 1.7 cm (4) 4 cm	dy then	this height i	S:			
	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2. Water flows into a large tank with area 1 cm^2 at its bottom. If the harmonic (1) 5.1 cm (3) 2.9 cm	h flat bottom at the reight of the water in mathongo	ate of 10^{-4} m^3s^{-1} . Verified that the tank remains steat (2) 1.7 cm (4) 4 cm heat reservoir at $T=$	dy then $= 10^2 \mathrm{K}$	this height in this height is the state of t	s: slab v	mathongo which is 1 m		
	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2. Water flows into a large tank with area 1 cm^2 at its bottom. If the harmonic (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is on thick. Given that the thermal contains $t = 10^3$ K is on the contains $t = 10^3$ K.	h flat bottom at the reight of the water in	ate of 10^{-4} m^3s^{-1} . V the tank remains stea (2) 1.7 cm (4) 4 cm heat reservoir at $T=$ is 0 .1 W K ⁻¹ m ⁻¹ ,	dy then $= 10^2 \mathrm{K}$, the end	by a copper	s: slab v	mathongo which is 1 m it in the		
	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2. Water flows into a large tank with area $1 cm^2$ at its bottom. If the hand of the	h flat bottom at the reight of the water in	ate of 10^{-4} m^3s^{-1} . Verification that the tank remains stead (2) 1.7 cm (4) 4 cm heat reservoir at $T = 10^{-4}$ is 0.1 W K ⁻¹ m ⁻¹ ,	dy then $= 10^2 \mathrm{K}$, the end	by a copper	s: slab v	mathongo which is 1 m it in the		
	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2. Water flows into a large tank with area 1 cm^2 at its bottom. If the harmonic (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is one thick. Given that the thermal consteady-state is: (1) 65 W m ⁻²	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo	ate of $10^{-4} m^3 s^{-1}$. Verification that the tank remains stead (2) 1.7 cm (4) 4 cm heat reservoir at $T = 10^{-4} \text{m}^{-1}$, where 10^{-4}m^{-1} , $10^{-4} \text{m}^{$	edy then 10 ² K the end	by a copper ergy flux thro	s: slab v	mathongo which is 1 m it in the mathongo		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2. Water flows into a large tank with area 1 cm^2 at its bottom. If the half (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is on thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻²	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo	ate of $10^{-4} m^3 s^{-1}$. V the tank remains stea (2) 1.7 cm (4) 4 cm heat reservoir at $T =$ is 0 .1 W K ⁻¹ m ⁻¹ , (2) 120 W m ⁻² (4) 200 W m ⁻²	= 10 ² K, the end	by a copper ergy flux through	s: slab v ough	which is 1 moit in the mathongo		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2). Water flows into a large tank with area 1 cm^2 at its bottom. If the harmonic (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is of thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻² 11. Three Carnot engines operate in	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo in series between a he	ate of $10^{-4} m^3 s^{-1}$. Verification that the tank remains stead (2) 1.7 cm (4) 4 cm heat reservoir at $T = 10^{-4} \text{ m}^{-1}$, (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperal	ady then $^{\prime\prime}=10^2~{ m K}$, the end $^{\prime\prime\prime}$ mature T_1	by a copper ergy flux throughouthongo and a heat s	slab vough	mathongo which is 1 m it in the mathongo mathongo		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2. Water flows into a large tank with area 1 cm^2 at its bottom. If the half (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is on thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻²	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo in series between a he	ate of $10^{-4} m^3 s^{-1}$. Verification that the tank remains stead (2) 1.7 cm (4) 4 cm heat reservoir at $T = 10^{-4} \text{ m}^{-1}$, (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperal	ady then $^{\prime\prime}=10^2~{ m K}$, the end $^{\prime\prime\prime}$ mature T_1	by a copper ergy flux throughouthongo and a heat s	slab vough	mathongo which is 1 m it in the mathongo mathongo		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2). Water flows into a large tank with area 1 cm^2 at its bottom. If the half (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is on thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻² 11. Three Carnot engines operate in temperature T_4 (see figure). The	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo a series between a heere are two other reserved.	ate of 10^{-4} m^3s^{-1} . We the tank remains stean (2) 1.7 cm (4) 4 cm heat reservoir at $T = 10^{-4}$ is 0.1 W K ⁻¹ m ⁻¹ , (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperature ervoirs at temperature	ady then $T_1 = 10^2 \mathrm{K}$, the end $T_2 = T_2$ and	by a copper ergy flux throughout and a heat so T_3 , as show	slab vough	mathongo which is 1 m it in the mathongo mathongo		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2). Water flows into a large tank with area 1 cm^2 at its bottom. If the harmonic (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is of thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻² 11. Three Carnot engines operate in	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo a series between a heere are two other reserved.	ate of 10^{-4} m^3s^{-1} . We the tank remains stean (2) 1.7 cm (4) 4 cm heat reservoir at $T = 10^{-4}$ is 0.1 W K ⁻¹ m ⁻¹ , (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperature ervoirs at temperature	ady then $T_1 = 10^2 \mathrm{K}$, the end $T_2 = T_2$ and	by a copper ergy flux throughout and a heat so T_3 , as show	slab vough	mathongo which is 1 m it in the mathongo mathongo		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2). Water flows into a large tank with area 1 cm^2 at its bottom. If the harmonic (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is of thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻² 11. Three Carnot engines operate in temperature T_4 (see figure). The mathonic of the standard ma	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo a series between a heere are two other reservations.	the tank remains stea (2) 1.7 cm (4) 4 cm heat reservoir at $T = $ is 0.1 W K ⁻¹ m ⁻¹ , (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperature	ature T_1	by a copper ergy flux throughout T_3 , as show	slab vough	which is 1 me it in the mathongo mathongo the mathon mathon mathon mathon mathon mathon mathongo the mathon ma		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2). Water flows into a large tank with area 1 cm^2 at its bottom. If the half (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is on thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻² 11. Three Carnot engines operate in temperature T_4 (see figure). The	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo a series between a heere are two other reservations.	the tank remains stea (2) 1.7 cm (4) 4 cm heat reservoir at $T = $ is 0.1 W K ⁻¹ m ⁻¹ , (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperature	ature T_1	by a copper ergy flux throughout T_3 , as show	slab vough	which is 1 me it in the mathongo mathongo the mathon mathon mathon mathon mathon mathon mathongo the mathon ma		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2). Water flows into a large tank with area 1 cm^2 at its bottom. If the half (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is one thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻² 11. Three Carnot engines operate in temperature T_4 (see figure). The mathons of	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo a series between a heere are two other reserved mathongo mathongo mathongo mathongo mathongo mathongo mathongo mathongo	ate of 10^{-4} m^3s^{-1} . We the tank remains steat (2) 1.7 cm (4) 4 cm heat reservoir at $T = 10^{-4}$ is 0.1 W K ⁻¹ m ⁻¹ , (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperature ervoirs at temperature	ady then $= 10^2 \mathrm{K}$ the end $= T_1$ atture T_1	by a copper ergy flux throughout T_3 , as shown	slab vough	mathongo which is 1 months it in the mathongo mathongo thathongo mathongo mathongo mathongo		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2). Water flows into a large tank with area 1 cm^2 at its bottom. If the harmonic (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is of thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻² 11. Three Carnot engines operate in temperature T_4 (see figure). The mathonic of the standard ma	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo a series between a heere are two other reserved mathongo mathongo mathongo mathongo mathongo mathongo mathongo mathongo	ate of 10^{-4} m^3s^{-1} . We the tank remains steat (2) 1.7 cm (4) 4 cm heat reservoir at $T = 10^{-4}$ is 0.1 W K ⁻¹ m ⁻¹ , (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperature ervoirs at temperature	ady then $= 10^2 \mathrm{K}$ the end $= T_1$ atture T_1	by a copper ergy flux throughout T_3 , as shown	slab vough	mathongo which is 1 months it in the mathongo mathongo thathongo mathongo mathongo mathongo		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2). Water flows into a large tank with area 1 cm^2 at its bottom. If the half (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is one thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻² 11. Three Carnot engines operate in temperature T_4 (see figure). The mathons of	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo is series between a hetere are two other reserved mathongo is mathon is mathonical.	the tank remains stea (2) 1.7 cm (4) 4 cm heat reservoir at $T = $ is 0.1 W K ⁻¹ m ⁻¹ , (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperature	ady then T_1 the end T_2 and T_3	by a copper ergy flux throughouthongo and a heat starthongo athongo athongo athongo athongo athongo	slab vough	mathongo which is 1 m it in the mathongo mathongo thathongo mathongo mathongo		
///. /Q1	(1) $\frac{3}{2}m v^2$ (3) $\frac{1}{2}m v^2$ 2). Water flows into a large tank with area 1 cm^2 at its bottom. If the half (1) 5.1 cm (3) 2.9 cm 10. A heat source at $T = 10^3$ K is one thick. Given that the thermal consteady-state is: (1) 65 W m ⁻² (3) 90 W m ⁻² 11. Three Carnot engines operate in temperature T_4 (see figure). The mathons of	h flat bottom at the reight of the water in mathongo connected to another inductivity of copper mathongo is series between a hetere are two other reserved mathongo is mathon is mathonical.	the tank remains stea (2) 1.7 cm (4) 4 cm heat reservoir at $T = $ is 0.1 W K ⁻¹ m ⁻¹ , (2) 120 W m ⁻² (4) 200 W m ⁻² at source at a temperature	ady then T_1 the end T_2 and T_3	by a copper ergy flux throughouthongo and a heat starthongo athongo athongo athongo athongo athongo	slab vough	mathongo which is 1 m it in the mathongo mathongo thathongo mathongo mathongo		

JEE Main 2019 (10 Jan Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

 $T_1 > T_2 > T_3 > T_4$. The three engines are equally efficient if: hongo // mothongo // mothongo

mathongo ///. mathongo ///. mathongo ///. mathongo
$$\epsilon_2$$

$$T_3$$
 /// mathongo /// mathongo /// mathongo /// mathongo

(1)
$$T_2 = (T_1 T_4^2)^{\frac{1}{3}}; T_3 = (T_1^2 T_4)^{\frac{1}{3}}$$
 (2) $T_2 = (T_1 T_4)^{\frac{1}{2}}; T_3 = (T_1^2 T_4)^{\frac{1}{3}}$ (3) $T_2 = (T_1^2 T_4)^{\frac{1}{3}}; T_3 = (T_1 T_4^2)^{\frac{1}{3}}$ (4) $T_2 = (T_1^3 T_4)^{\frac{1}{4}}; T_3 = (T_1 T_4^3)^{\frac{1}{3}}$

(3)
$$T_2 = (T_1 T_4)^{\frac{1}{3}}; T_3 = (T_1 T_4)^{\frac{1}{3}}$$

(4)
$$T_2 = (T_1^3 T_4)^{\frac{1}{4}}; T_3 = (T_1 T_4^3)^{\frac{1}{3}}$$

Q12. A train moves towards a stationary observer with speed 34 m/s. The train sounds a whistle and its frequency registered by the observer is f_1 . If the speed of the train is reduced to 17 m/s, the frequency registered is f_2 . If speed of sound is 340 m/s, then the ratio f_1/f_2 is:

$$(2) \ 20/19$$

 $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo

Q13. A string of length 1 m and mass 5 g is fixed at both ends. The tension in the string is 8 .0 N. The string is set into vibration using an external vibrator of frequency 100 Hz. The separation between successive nodes on the string is close to mathonao

(1) 20.0 cm

- (2) 10.0 cm
- (3) 16 .6 cm // mathongo /// mathongo (4) 33.3 cm // mathongo /// mathongo

Q14. Two electric dipoles, A,B with respective dipole moments $\overrightarrow{d_A}=-4qa\hat{i}$ and $\overrightarrow{d_B}=-2qa\hat{i}$ are placed on the x axis with a separation R, as shown in the figure

The distance from A at which both of them produce the same potential is: _______ mathongo

$$(2) \frac{\sqrt{2R}}{\sqrt{2}-1}$$

(1)
$$\frac{R}{\sqrt{2}-1}$$
 (2) $\frac{\sqrt{2}R}{\sqrt{2}-1}$ (3) $\frac{\sqrt{2}R}{\sqrt{2}+1}$ (4) $\frac{R}{\sqrt{2}+1}$ thongo /// mathongo /// mathongo

Q15. A charge Q is distributed over three concentric spherical shells of radii a, b, c (a < b < c) such that their

surface charge densities are equal to one another.

- The total potential at a point at distance r from their common centre, where r < a, would be: (1) $\frac{Q}{4\pi\epsilon_0(a+b+c)}$ (2) $\frac{Q(a^2+b^2+c^2)}{4\pi\epsilon_0(a^3+b^3+c^3)}$ (3) $\frac{Q}{12\pi\epsilon_0} \frac{ab+bc+ca}{abc}$ (4) $\frac{Q(a+b+c)}{4\pi\epsilon_0(a^2+b^2+c^2)}$

Question Paper

Q16. A parallel plate capacitor is of area $6 cm^2$ and a separation 3 mm. The gap is filled with three dielectric materials of equal thickness (see figure) with dielectric constant $K_1 = 10$, $K_2 = 12$ and $K_3 = 14$. The dielectric constant of a material which when fully inserted in above capacitor, gives same capacitance would be:

mathongo ma

Q17. In the given circuit the cells have zero internal resistance. The currents (in amperes) passing through resistance R_1 and R_2 respectively, are:

Q18. A uniform metallic wire has a resistance of 18 Ω and is bent into an equilateral triangle. Then, the resistance between any two vertices of the triangle is:

 $(1) 2 \Omega$

(2) 12 Ω

 $(3) 8 \Omega$

(4) 4 Ω nathongo ///. mathongo ///. mathongo

Q19. A 2 W carbon resistor is color coded with green, black, red and silver respectively. The maximum current which can be passed through this resistor is:

(1) 100 mA

(2) 0.4 mA

- (3) 20 mA
- // mathongo /// mathongo (4) 63 mA_{nongo} /// mathongo /// mathongo

Q20. A magnet of total magnetic moment 10^{-2} î A m² is placed in a time varying magnetic field, $Bi(\cos \omega t)$ where B=1 Tesla and $\omega=0.125~{
m rad~s^{-1}}$. The work done for reversing the direction of the magnetic moment at

JEE Main Previous Year Paper MathonGo

Question Paper

(3) $\pi n \rho_0 l^3$

nt = 1 second, is: mathongo /// mathongo /// mathongo /// mathongo (2) 0.02 J(1) 0.007 J///. mathongo ///. mathongo (4) 0.01 Jhongo ///. mathongo ///. mathongo (3) 0.014 J

Q21. An insulating thin rod of length l has a linear charge density $\rho(x) = \rho_0 \frac{x}{l}$ on it. The rod is rotated about an axis passing through the origin (x = 0) and perpendicular to the rod. If the rod makes n rotations per second, then the time averaged magnetic moment of the rod is:

(2) $n \rho_0 l^3$ hongo /// mathongo /// mathongo $(1) \frac{\pi}{4} n \rho_0 l^3$

 $(4) \frac{\pi}{2} n \rho_0 l^3$

Q22. A solid metal cube of edge length 2 cm is moving in the positive y-direction, at a constant speed of 6 m s⁻¹.

There is a uniform magnetic field of 0.1 T in the positive z-direction. The potential difference between the two faces of the cube, perpendicular to the x-axis, is

(1) 12 mV (2) 1 mVmathongo /// mathongo /// mathongo /// mathongo (3) 2 mV

Q23. If the magnetic field of a plane electromagnetic wave is given by (The speed of light $= 3 \times 10^8~m/s$) $B = 100 \times 10^{-6} \sin[2\pi \times 2 \times 10^{15}(t-\frac{x}{c})]$ then the maximum electric field associated with it is:

(1) $3 \times 10^4 \text{ N C}^{-1}$ (2) $4 \times 10^4 \text{ N C}^{-1}$ (4) $6 \times 10^4 \text{ N C}^{-1}$

Q24. A plano-convex lens of refractive index μ_1 and focal length f_1 is kept in contact with another plano-concave lens of refractive index μ_2 and focal length f_2 . If the radius of curvature of their spherical faces is R each and $f_1=2f_2,$ the μ_1 and μ_2 are related as: mathongo we mathongo we mathongo we mathongo

 $(1) 2\mu_2 - \mu_1 = 1$ (2) $3\mu_2 - 2\mu_1 = 1$

(3) $\mu_1 + \mu_2 = 3$ mathongo (4) $2\mu_1 - \mu_2 = 1$ mathongo (7) mathongo

Q25. In a Young's double slit experiment slit separation 0.1 mm, one observes a bright fringe at angle $\frac{1}{40}$ rad by using light of wavelength λ_1 . When the light of wavelength λ_2 is used a bright fringe is seen at the same angle in the same set up. Given that λ_1 and λ_2 are in visible range (380 nm to 740 nm), their values are:

(1) 400 nm, 500 nm though // mathons (2) 380 nm, 525 nm mathons // mathons

(3) 625 nm, 500 nm $(4)\ 380\ nm,\ 500\ nm$

Q26. In an electron microscope, the resolution that can be achieved is of the order of the wavelength of electrons used. To resolve a width of 7.5×10^{-12} m, the minimum electron energy required is close to:

(1) $100 \ keV$ (2) $25 \ keV$

(3) 1 keV $(4)\ 500\ keV$

Q27. Using a nuclear counter the count rate of emitted particles from a radioactive source is measured. At t=0 it was 1600 counts per second and t = 8 seconds it was 100 counts per second. The count rate observed, as

counts per second, at t = 6 seconds is close to: (1)400

(3) 150

Q28. To get output '1' at R, for the given logic gate circuit the input values must be: mathongo R mathongo

- **Q29.** A TV transmission tower has a height of 140 m and the height of the receiving antenna is 40 m. What is the maximum distance upto which signals can be broadcasted from this tower in LOS (Line of Sight) mode? (Given: radius of earth = $6.4 \times 10^6 m$).
 - (1) 48 km

(2) 40 km

- (3) 80 km
- mathongo /// mathongo (4) $65 \, km$ mathongo /// mathongo /// mathongo
- Q30. A potentiometer wire AB having length L and resistance 12r is joined to a cell D of emf ε and internal resistance r. A cell C having EMF $\varepsilon/2$ and internal resistance 3r is connected. The length AJ, at which the galvanometer, as shown in the figure, shows no deflection is

- Q31. Which of the graphs shown below does not represent the relationship between incident light and the electron
- ejected from metal surface?

 mathongo // m

Q32. The type of hybridization and no. of lone pair(s) of electron of Xe in $XeOF_4$, respectively, are:

(1) sp^3d^2 and 1

(2) $sp^{3}d^{2}$ and 2

(3) sp^3d and 2

(4) sp^3d and 1

Q33. Two pi and half sigma bonds are present in:

- (1) O_2^-
- mathongo ///. mathongo (2) N_2^+
- (3) N_2

- /// mathongo /// mathongo (2) 5K athongo //
- **Q34.** A process has $\Delta H = 200 \, J \, mol^{-1}$ and $\Delta S = 40 \, J K^{-1} mol^{-1}$. Out of the values given below choose the minimum temperature above which the process will be spontaneous:
 - $(1)\ 20\ K$

 $(3)\ 12K$

 $(4) \ 4K$

Join the Most Relevant Test Series for JEE Main with Most Detailed & Advanced Analysis here: https://links.mathongo.com/mWN

Q35. What are the values of $\frac{K_p}{K_c}$ for the following reactions at 300 K respectively?

 $(At~300~K,~RT=24~.62~dm^2~atm~mol^{-1}~)$

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$

 $N_2O_4(g) \rightleftharpoons 2NO(g)$

- $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- $24.63 \, \mathrm{dm}^3 \, \mathrm{atm} \, \mathrm{mol}^{-1}$
- $606.0 \, \mathrm{dm}^6 \, \mathrm{atm}^2 \, \mathrm{mol}^{-2}$ $1.65 \times 10^{-3} \, \mathrm{dm^{-6} \, atm^{-2} \, mol^2}$
- (3) 1,24.62 dm³ atm mol⁻¹ $1.65 \times 10^{-3} \, \mathrm{dm^{-6} \, atm^{-2} \, mol^2}$
- (2) $1,24.62 \text{ dm}^6 \text{ atm}^3 \text{ mol}^{-1}$ $606.0 \, \mathrm{dm}^6 \, \mathrm{atm}^2 \, \mathrm{mol}^{-2}$
- (4) $1, 4.1 \times 10^{-2} \,\mathrm{dm}^{-3} \,\mathrm{atm}^{-1} \,\mathrm{mol},$ $606 \, \mathrm{dm}^6 \, \mathrm{atm}^2 \, \mathrm{mol}^{-2}$

Question Paper

JEE Main Previous Year Paper MathonGo

Q36. A mixture of 100 m mol of Ca (OH)₂ and 2 g of sodium sulphate was dissolved in water and the volume was made up to 100 mL. What is the mass of calcium sulphate formed and the concentration of OH⁻ in resulting solution, respectively? (Molar mass of Ca (OH)₂, Na₂ SO₄ and CaSO₄ are 74, 143 and 136 g mol⁻¹, respectively; K_{sp} of $Ca(OH)_2$ is 5.5×10^{-6})

- $(1) 1 .9 g, 0 .14 mol L^{-1}$
- (3) 1 .9 g, 0 .28 mol L^{-1}

- (2) 13 .6 g, 0 .28 mol L^{-1}
- (4) 13 .6 g, 0 .14 mol L^{-1}

Q37. The chemical nature of hydrogen peroxide is:

- (1) Oxidizing and reducing agent in both acidic and basic medium.
- (3) Oxidizing and reducing agent in acidic medium, but not in basic medium
- (2) Oxidizing agent in acidic medium, but not in basic medium
- (4) Reducing agent in basic medium, but not in acidic medium.

Q38. The total number of isotopes of hydrogen and number of radioactive isotopes among them, respectively, are

- (1) 2 and 1
- (3) 3 and 1

- (2) 2 and 0
- (4) 3 and 2

Q39. The metal used for making X-ray tube window is:

- (1) Mg
- (3) Be

- (2) Na
- (4) Ca

Q40. The electronegativity of aluminum is similar to:

- (1) Beryllium
- (3) Carbon

- (2) Boron
- (4) Lithium

Q41. The increasing order of the pKa values of the following compounds is:

OMehongo

 $_{\rm n}B_{\rm thongo}$

C_{mathongo} /// D_{nathongo} /// mathongo

- (1) B < C < A < D
- (3) B < C < D < A

- (2) D < A < C < B
- (4) C < B < A < D

Q42. If Dichloromethane (DCM) and water H₂O are used for differential extraction, which one of the following statements is correct?

- (1) DCM and H_2O would stay as upper and lower layer respectively in the separating funnel (S.F.)
- (3) DCM and H₂O would stay as lower and upper layer respectively in the S.F
- (2) DCM and H_2O will be miscible clearly

(4) DCM and H₂O will make turbid/colloidal mixture

Q43. The major product of the following reaction is: 190 /// mathongo /// mathongo /// mathongo

Q44. Which hydrogen in compound (E) is easily replaceable during bromination reaction in presence of light?

$$CH_3-CH_2-CH=CH_2$$
 β
 α
(E)

(1) β - hydrogen

(2) δ - hydrogen

(3) α -hydrogen

(4) γ - hydrogen

Q45. Water filled in two glasses A and B gave BOD values of 10 and 20, respectively. The correct statement regarding them is mathonical mathoni

- (1) A is suitable for drinking, whereas B is not
- (2) B is more polluted than A
- (3) Both A and B are suitable for drinking
- (4) A is more polluted than B

Q46. Which primitive unit cell has unequal edge lengths $(a \neq b \neq c)$ and all axial angles different from 90^o

(1) Hexagonal

(2) Monoclinic /// mathongo

(3) Triclinic

(4) Tetragonal

Q47. Liquids A and B form an ideal solution in the entire composition range. At 350K, the vapour pressure of pure A and pure B are 7×10^3 Pa and 12×10^3 Pa, respectively. The composition of the vapour in equilibrium with a solution containing 40 mole percent of A at this temperature is:

(1) $x_A = 0.4; x_B = 0.6$

- (2) $x_A = 0.76; x_B = 0.24$
- (3) $x_A = 0.28; x_B = 0.72$
- (4) $x_A=0.37; x_B=0.63$ athongo with mathongo

Q48. Consider the following reduction processes:

$$Zn^{2+} + 2e^- \to Zn\big(s\big); E^o = -0 \; .76 \; \; V$$

$${
m Ca^{2+} + 2e^{-}
ightarrow Ca(s); E^{o} = -2.87 \ V}$$

$$Mg^{2+}+2e^-
ightarrow Mg(s); E^o=-2.36~V$$
 athongo /// mathongo // mat

The reducing power of the metals increases in the order: mathongo /// mathongo

(1) Ca < Mg < Zn < Ni

(2) Zn < Mg < Ni < Ca

- (3) Ni < Zn < Mg < Ca
- $_{\rm max}$ mathons (4) ${
 m Ca} < {
 m Zn} < {
 m Ni} < {
 m Mg}$

Q49. Consider the given plots for a reaction obeying Arrhenius equation $(0^{\circ}C < T < 300^{\circ}C)$: (Kand E_a are rate constant and activetion energy, respectively)

- (1) I is wrong but II is right
- (3) I is right but II is wrong

- (2) Both I and II are wrong
- (4) Both I and II are correct

Q50. Which of the following is not an example of heterogeneous catalysis reaction?

(1) Combustion of Coal

- (2) Hydrogenation of Vegetable oils
- (3) Ostwald's process thougo // mothongo
- (4) Haber's process // mothongo

Q51. Hall Heroult's process is given by:

- $(1)\ Cr_2O_3 + 2Al \rightarrow Al_2O_3 + Cr$
- (2) $2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$
- $(3) \; Cu^{2+}\big(aq\big) + H_2\big(g\big) \to Cu\big(s\big) + 2H^+\big(aq\big)$
- $(4) \ ZnO + C \xrightarrow{\text{Coke}, 1673} Zn + CO$

Q52. The effect of lanthanoid contraction in the lanthanoid series of elements by and large means

- (1) increase in atomic radii and decrease in ionic
- (2) decrease in atomic radii and increase in ionic
- (3) increase in both atomic and ionic radii.
- (4) decrease in both atomic and ionic radii.

Q53. The total number of isomers for a square planar complex: $[MCl(F)(NO_2)(SCN)]$ is: once /// mothonoo

(1) 12 (2) 16

// n(3) 4ongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q54. Wilkinson catalyst is

 $(1) \left[\left(\mathrm{Et}_{3} \, \mathrm{P} \right)_{3} \, \mathrm{IrCl} \right] \left(\mathrm{Et} = \mathrm{C}_{2} \mathrm{H}_{5} \right)$

(2) [(Ph₃ P)₃ RhCl] /// mathongo /// mathongo

 $(3) [(Ph_3 P)_3 IrCl]$

 $(4) [(Et_3 P)_3 RhCl]$

/ mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q55. The major product of the following reaction is:

CH₃O CH₂Cl (i) AlCl₂ (anhydr

(i) AlCl₃ (anhydrous) hongo /// mathongo

(ii) H₂O

nathongo /// mathongo /// mathongo /// mathongo /// mathongo

(1) CH₃O (2) CH₃O (2) mathongo (2) CH₃O (3) mathongo (3) mathongo (4) mathongo (4) mathongo (4) mathongo (5) mathongo (6) mathongo (7) mathong

mathongo /// mathongo /// mathongo /// mathongo /// mathongo CH3 mathongo

mathongo /// mathongo

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Q56. The major product 'X' formed in the following reaction is:

mathogo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

 $\frac{1}{1}$ methong $\frac{1}{1}$ mathong $\frac{1}{1}$ mathong $\frac{1}{1}$ mathong $\frac{1}{1}$ mathong $\frac{1}{1}$ mathong $\frac{1}{1}$ mathong

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

(1) III > II > IV > I

(3) IV > II > III > I

thongo (2) III > II > IV (4) II > III > I > IV mathongo (4) II > IIV

Question Paper

MathonGo

mathong mathong mathong mathong mathong particles $\mathbf{Q61}$. Consider the quadratic equation $(c-5)x^2-2cx+(c-4)=0,\ c\neq 5$. Let S be the set of all integral values of c for which one root of the equation lies in the interval (0, 2) and its other root lies in the interval (2, 3). Then the number of elements in S is

OCOCH₂

(1) 11

- (3) 18
- $\frac{(2)}{(4)}\frac{12}{10}$ mathongo $\frac{(2)}{(4)}\frac{12}{10}$ mathongo $\frac{(2)}{(4)}\frac{12}{10}$ mathongo
- **Q62.** Let z_1 and z_2 be any two non-zero complex numbers such that $3|z_1|=4|z_2|$. If $z=\frac{3z_1}{2z_2}+\frac{2z_2}{3z_1}$ then maximum value of |z| is

Note: In actual paper value of |z| was asked. Hence, none of the options given were correct. So we have modified the question as well as options.

 $(1)\frac{7}{2}$

- mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q63. If 5, 5r, $5r^2$ are the lengths of the sides of a triangle, then r can not be equal to:

- $\begin{array}{c} (1) \frac{3}{4} \\ (3) \frac{5}{4} \end{array}$ mathongo \text{mathongo} \text{ mathongo} \text{ mathon

Q64. The sum of all two digit positive numbers which when divided by 7 yield 2 or 5 as remainder is

(1) 1356

(2) 1365

(3) 1256

(4) 1465 mathongo /// mathongo

Q65. If $\sum_{i=1}^{20} \left(\frac{{}^{20}C_{i-1}}{{}^{20}C_{i}+{}^{20}C_{i-1}} \right)^3 = \frac{k}{21}$, then k equals

(1) 200

(2) 100 mathongo ///. mathongo

(4) 400

Q66. If the third term in the binomial expansion of $(1+x^{\log_2 x})^5$ equals 2560, then a possible value of x is

- (1) $4\sqrt{2}$
- 4 mathongo /// mathongo (2) $\frac{1}{8}$ mathongo /// mathongo (4) $\frac{1}{4}$
- (3) $2\sqrt{2}$

Q67. The sum of all values of $\theta \in (0, \frac{\pi}{2})$ satisfying $\sin^2 2\theta + \cos^4 2\theta = \frac{3}{4}$ is **Mathonso**

MathonGo

Question Paper

 $n(1)\frac{\pi}{2}$ ngo /// mathongo /// mathongo (2) $\frac{3\pi}{8}$ nathongo /// mathongo /// mathongo

Q68. If the line 3x + 4y - 24 = 0 intersects the x-axis is at the point A and the y-axis at the point B, then the incentre of the triangle *OAB*, where *O* is the origin, is: (2) (3, 4) hongo /// mathongo /// mathongo

(1)(4, 4)

(3)(4,3)

(4)(2, 2)

Q69. A point P moves on the line 2x - 3y + 4 = 0. If Q(1, 4) and R(3, -2) are fixed points, then the locus of the centroid of ΔPQR is a line:

(1) with slope $\frac{2}{3}$

(2) with slope $\frac{3}{2}$

(3) parallel to y-axis

(4) parallel to x-axis

Q70. If a circle C passing through the point (4, 0) touches the circle $x^2 + y^2 + 4x - 6y = 12$ externally at the point (1, -1), then the radius of C is:

(1) 4 units

(2) 5 units

(3) $2\sqrt{5}$ units

(4) $\sqrt{57}$ units

Q71. If the parabolas $y^2 = 4b(x-c)$ and $y^2 = 8ax$ have a common normal, then which one of the following is a valid choice for the ordered triad (a, b, c)

(1)(1,1,3)

(2) $(\frac{1}{2},2,0)$

 $(3) \left(\frac{1}{2}, 2, 3\right)$

/// mathongo /// mathongo (4) All of above /// mathongo /// mathongo

Q72. The equation of a tangent to the hyperbola, $4x^2 - 5y^2 = 20$, parallel to the line x - y = 2, is

(1) x - y + 7 = 0

(2) x - y - 3 = 0

(3) x - y + 1 = 0

(4) x - y + 9 = 0

Q73. For each $t \in R$, let [t] be the greatest integer less than or equal to t. Then, $\lim_{t \to \infty} \frac{(1-|x|+\sin|1-x|)\sin([1-x]\frac{\pi}{2})}{|x|^{\frac{1}{2}}}$

(1) equals 0 mothongo mothongo

(2) equals -1

(3) does not exist

(4) equal 1

Q74. Consider the statement: " $P(n): n^2 - n + 41$ is prime". Then which one of the following is true?

(1) P(3) is false but P(5) is true

(2) Both P(3) and P(5) are false

(3) Both P(3) and P(5) are true

(4) P(5) is false but P(3) is true

Q75. The mean of five observations is 5 and their variance is 9.20. If three of the given five observations are 1, 3 and 8, then a ratio of other two observations is

(1) 10:3

mathongo (2) 4:9 mathongo (4) 5:8 mathongo (7) mathongo

(3) 6:7

Q76. Consider a triangular plot ABC with sides AB = 7 m, BC = 5 m and CA = 6 m. A vertical lamp-post at the mid-point D of AC subtends an angle 30° at B. The height (in m) of the lamp-post is:

 $(1) 2\sqrt{21}$

/// mathongo /// mathongo (2) $\frac{2}{3}\sqrt{21}$ nongo /// mathongo /// mathongo

 $(3) \frac{3}{2} \sqrt{21}$

(4) $7\sqrt{3}$

Join the Most Relevant Test Series for JEE Main with Most Detailed & Advanced Analysis here: https://links.mathongo.com/mWN

JEE Main Previous Year Paper

Question Paper MathonGo

Q77. In a class of 140 students numbered 1 to 140, all even numbered students opted Mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted

Chemistry course. Then the number of students who did not opt for any of the three courses is:

(1)42

(2) 1

- (3) 38
- ngo /// mathongo /// mathongo (4) 102 athongo /// mathongo /// mathongo

Q78. If the system of equations x + y + z = 5, x + 2y + 3z = 9, $x + 3y + \alpha z = \beta$ has inifinitely many solutions, then $\beta-\alpha$ equals mathongo /// mathongo /// mathongo /// mathongo

(1) 8

- n(3) 5 ongo /// mathongo /// mathongo /// mathongo /// mathongo

Let $d \in R$, and $A = \begin{bmatrix} -2 & 4+d & (\sin\theta)-2 \\ 1 & (\sin\theta)+2 & d \\ 5 & (2\sin\theta)-d & (-\sin\theta)+2+2d \end{bmatrix}$, $\theta \in [0,\ 2\pi]$. If the minimum value of $\det(A)$ is 8, then a value of d is: $(1)\ 2\Big(\sqrt{2}+2\Big) \qquad \qquad (2)\ 2\Big(\sqrt{2}+1\Big)$ $(3)\ -5 \qquad \qquad (4)\ -7$

Q80. Let $f(x) = \begin{cases} max(|x|, x^2), & |x| \leq 2 \\ 8 - 2|x|, & 2 < |x| < 4 \end{cases}$. Let S be the set of points in the interval (-4, 4) at which f is not differentiable. Then S

- (1) equals $\{-2, -1, 0, 1, 2\}$ (2) equals $\{-2, 2\}$ (3) mathongo

(3) is an empty set

(4) equal $\{-2, -1, 1, 2\}$

Q81. Let, f:R o R be a function such that $f(x)=x^3+x^2f'(1)+xf''(2)+f'''(3),\ orall x\in R.$ Then f(2) equals go /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q82. The shortest distance between the point $(\frac{3}{2},0)$ and the curve $y=\sqrt{x},(x>0)$, is though a mathon of

- $n(3)\frac{3}{2}$ ngo /// mathongo /// mathongo (4) $\frac{\sqrt{5}}{2}$ athongo /// mathongo

Q83. Let, $n \geq 2$ be a natural number and $0 < \theta < \frac{\pi}{2}$. Then $\int \frac{(\sin^n \theta - \sin \theta)^{\frac{1}{n}} \cos \theta}{\sin^{n+1} \theta} d\theta$, is equal to $(1) \frac{n}{n^2 - 1} \left(1 - \frac{1}{\sin^{n+1} \theta}\right)^{\frac{n+1}{n}} + c$ $(2) \frac{n}{n^2 + 1} \left(1 - \frac{1}{\sin^{n-1} \theta}\right)^{\frac{n+1}{n}} + c$ $(3) \frac{n}{n^2 - 1} \left(1 - \frac{1}{\sin^{n-1} \theta}\right)^{\frac{n+1}{n}} + c$ $(4) \frac{n}{n^2 - 1} \left(1 + \frac{1}{\sin^{n-1} \theta}\right)^{\frac{n+1}{n}} + c$

Q84. Let $I = \int_a^b (x^4 - 2x^2) dx$. If I is minimum then the ordered pair (a, b) is $(1) \left(0, \sqrt{2}\right) \qquad \qquad (2) \left(\sqrt{2}, -\sqrt{2}\right)$ $(3) \left(-\sqrt{2}, 0\right) \qquad \qquad (4) \left(-\sqrt{2}, \sqrt{2}\right)$

Q85. If the area enclosed between the curves $y = kx^2$ and $x = ky^2$, (k > 0), is 1 sq. unit. Then k is $(2) \frac{1}{2}$

(1) $\sqrt{3}$

- (3) $\frac{\sqrt{3}}{2}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Question Paper

MathonGo

Q86. If $\frac{dy}{dx} + \frac{3}{\cos^2 x}y = \frac{1}{\cos^2 x}$, $x \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$, and $y\left(\frac{\pi}{4}\right) = \frac{4}{3}$, then $y\left(-\frac{\pi}{4}\right)$ equals mothongo.

- $n(3)\frac{1}{3}+e^6$ /// mathongo /// mathongo (4) $-\frac{4}{3}$ athongo /// mathongo /// mathongo

Q87. Let $\overrightarrow{a} = 2\hat{i} + \lambda_1 \hat{j} + 3\hat{k}$, $\overrightarrow{b} = 4\hat{i} + (3 - \lambda_2)\hat{j} + 6\hat{k}$ and $\overrightarrow{c} = 3\hat{i} + 6\hat{j} + (\lambda_3 - 1)\hat{k}$ be three vectors such that $\overrightarrow{b}=\overrightarrow{2a}$ and \overrightarrow{a} is perpendicular to \overrightarrow{c} . Then a possible value of $(\lambda_1,\ \lambda_2,\ \lambda_3)$ is

- $(1)\left(-\frac{1}{2},4,0\right)$ mathong /// mathong (2) (1,5,1) mathong /// mathong

 $(3) \left(\frac{1}{2}, 4, -2\right)$

Q88. Let A be a point on the line $\overrightarrow{r} = (1 - 3\mu)\hat{i} + (\mu - 1)\hat{j} + (2 + 5\mu)\hat{k}$ and B(3, 2, 6) be a point in the space.

Then the value of μ for which the vector \overrightarrow{AB} is parallel to the plane x-4y+3z=1 is

 $(1)^{\frac{1}{2}}$

 $(2) \frac{1}{4}$

(3) $-\frac{1}{4}$ mathong whathong which whathong whathon which $\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-4}{3}$ also passes through the point (1) (1, 1, -1) (2) (-1, -1, -1)

- (3) (-1, -1, 1) mathons (4) (1, 1, 1) mathons (4) (1, 1, 1)

Q90. An unbiased coin is tossed. If the outcome is a head then a pair of unbiased dice is rolled and the sum of the numbers obtained on them is noted. If the toss of the coin results in tail then a card from a well-shuffled pack of nine cards numbered $1, 2, 3, \ldots, 9$ is randomly picked and the number on the card is noted. The probability that the noted number is either 7 or 8 isnathongo /// mathongo /// mathongo /// mathongo

 $(1) \frac{13}{36}$

- (3) $\frac{15}{72}$ ngo /// mathongo /// mathongo (4) $\frac{19}{36}$ nathongo /// mathongo /// mathongo

ANSWER KEYS	muino go	//. go	//. umnimego ///.	merina go	//.
1. (3) 2. (3)	3. (1)	/// 4. (4) _{nongo}	5. (1) 6. (1) 6. (1)	7. (3)	/// 8. (2) hongo
9. (1) 10. (3)	11. (3)	12. (3)	13. (1) 14. (2)	15. (4)	16. (4)
17. (3) othor 18. (4)	mat 19. (3)	20. (2) 0000	21. (1) athor 22. (1) //	23. (1)	24. (4) ongo
25. (3) 26. (2)	27. (2)	28. (4)	29. (4) 30. (4)	31. (1)	32. (1)
33. (2) 34. (2)	35. (3)	36. (3)	37. (1) 38. (3)	39. (3)	40. (1)
41. (1) 42. (3)	43. (3)	44. (4)	45. (2) 46. (3)	47. (3)	48. (3)
49. (4) 50. (1)	51. (2)	52. (4)	53. (1) 54. (2)	55. (1)	56. (1)
57. (2) athon 58. (4)	59. (3)	/// 60. (1)ongo	61. (1) athor 62. (3)	ma 63. (4)	64. (1) ongo
65. (2) 66. (4)	67. (1)	68. (4)	69. (1) 70. (2)	71. (4)	72. (3)
73. (1) 74. (3)	75. (2)	76. (2)	77. (3) 78. (1)	79. (3)	80. (1)
81. (4) 82. (4)	83. (3)	84. (4) mathongo	85. (2) 86. (3)	87. (1)	88. (2)
89. (4) 90. (2)					