JEE Main Previous Year Paper MathonGo

Question Paper

Q1. In order to determine the Young's Modulus of a wire of radius 0.2 cm (measured using a scale of least count = 0.001 cm) and length 1 m (measured using a scale of least count = 1 mm), a weight of mass 1 kg (measured using a scale of least count = 1 g) was hanged to get the elongation of 0.5 cm (measured using a scale of least count 0.001 cm). What will be the fractional error in the value of Young's Modulus determined by this experiment?

(1) 0.14%

(2) 0.9%

- (3) 9%
- /// mathongo /// mathongo (4) 1.4% thongo /// mathongo /// mathongo

Q2. A mosquito is moving with a velocity $\overrightarrow{v} = 0.5t^2\hat{\mathbf{i}} + 3t\hat{\mathbf{j}} + 9\hat{\mathbf{k}} \text{ m s}^{-1}$ and accelerating in uniform conditions. What will be the direction of mosquitoes after 2 s?

- (1) $\tan^{-1}\left(\frac{2}{3}\right)$ from x-axis
- (2) $\tan^{-1}\left(\frac{\sqrt{85}}{6}\right)$ from y-axis (4) $\tan^{-1}\left(\frac{5}{2}\right)$ from x-axis
- (3) $\tan^{-1}\left(\frac{5}{2}\right)$ from y-axis

Q3. Statement I: A cyclist is moving on an unbanked road with a speed of 7 km h⁻¹ and takes a sharp circular turn along a path of the radius of 2 m without reducing the speed. The static friction coefficient is 0.2. The cyclist will not slip and pass the curve $(g = 9.8 \text{ m s}^{-2})$

Statement II: If the road is banked at an angle of 45°, cyclist can cross the curve of 2 m radius with the speed of 18.5 km h⁻¹ without slipping. In the light of the above statements, choose the correct answer from the options given below.

- (1) Statement I is incorrect and statement II is correct (2) Statement I is correct and statement II is incorrect
- (3) Both statement I and statement II are false
- (4) Both statement I and statement II are true

Q4. A large block of wood of mass M = 5.99 kg is hanging from two long massless cords. A bullet of mass m=10 g is fired into the block and gets embedded in it. The (block + bullet) then swing upwards, their center of mass rising a vertical distance h = 9.8 cm before the (block + bullet) pendulum comes momentarily to rest at the end of its arc. The speed of the bullet just before the collision is: (Take $g = 9.8 \text{ m s}^{-2}$)

h mathongo **///.** mathongo **///.** mathongo

- $(1) 841.4 \text{ m s}^{-1}$
- mathongo /// mathongo $\frac{(2) 811.4 \text{ m s}^{-1}}{(4) 821.4 \text{ m s}^{-1}}$ mathongo /// mathongo
- $(3) 831.4 \text{ m s}^{-1}$

Q5. What will be the nature of flow of water from a circular tap, when its flow rate increased from 0.18 L (min)⁻¹ to $0.48 \,\mathrm{L} \,(\mathrm{min})^{-1}$? The radius of the tap and viscosity of water are $0.5 \,\mathrm{cm}$ and $10^{-3} \,\mathrm{Pa}$ s, respectively. (Density of water : 10^3 kg m^{-3})

JEE Main Previous Year Paper

Question Paper MathonGo

	(1) Unsteady to steady flow go // mathongo (3) Remains turbulent flow	(2) Remains steady flow mathongo(4) Steady flow to unsteady flow
Q6		is mounted rigidly as shown. The metal A has higher. When the bimetallic strip is placed in a cold both, it will:
	mathon A B mathongo W mathongo	
	mathongo ///. mathongo ///. mathongo	
	(1) Bend towards the right mathongo (3) Neither bend nor shrink	(2) Not bend but shrink mathongo // mathongo (4) Bend towards the left
Q7	. Calculate the value of the mean free path (λ) for oxygin 1.01, 105 B.	
	1.01×10^5 Pa. Assume the molecular diameter 0.3	
	(1) 58 nm (3) 86 nm	(2) 32 nm (2) (4) 102 nm (4) 102 nm
	mass = 500 g, Decay constant = 20 g s^{-1} then how redrop to half of its initial value? ($\ln 2 = 0.693$) (1) 34.65 s (3) 0.034 s	cuting simple harmonic motion decreases with time. If much time is required for the amplitude of the system to (2) 17. 32 s (4) 15. 1 s
Ų9	Find out the surface charge density at the intersection uniform line charge of 8 nC m ^{-1} lying along the z-a	The final original was a final original
	(1) 0.424 nC m^{-2} (3) 0.07 nC m^{-2}	(2) 47. 88 nC m ⁻² (4) 4. 0 nC m ⁻² (2) 47. 88 nC m ⁻² (3) 47. 88 nC m ⁻²
Q1	0. A resistor develops 500 J of thermal energy in 20 s is increased from 1.5 A to 3 A, what will be the energy	when a current of 1.5 A is passed through it. If the current
		(2) 1000 J ongo /// mathongo /// mathongo (4) 2000 J
Q1	1. A charge Q is moving \overrightarrow{dl} distance in the magnetic figure	$ ightharpoonup \rightarrow$ mathon $ ightharpoonup$ mathon $ ighth$
	(1) 1	(2) Infinite
	(3) Zero // mathongo // mathongo	(4) — mathongo /// mathongo /// mathongo
Q1	2. The magnetic field in a region is given by $\overrightarrow{B} = B_0$ (the x and y axes. The loop is moved with a constant	$(\frac{x}{a})\hat{\mathbf{k}}$. A square loop of side d is placed with its edges along velocity $\overrightarrow{y} = y_0\hat{\mathbf{i}}$. The emf induced in the loop is:
		we will be the first find the four in the four is . "" mathong " mathong " mathong " mathong the first find the four in the

Question Paper

JEE Main Previous Year Paper MathonGo

Q13. For the given circuit, comment on the type of transformer used:

- (1) Auxilliary transformer
- (3) Step-up transformer

- (2) Auto transformer
- (4) Step down transformer
- Q14. Red light differs from blue light as they have:
 - (1) Different frequencies and different wavelengths (2) Different frequencies and same wavelengths
 - (3) Same frequencies and same wavelengths
- (4) Same frequencies and different wavelengths
- Q15. The refractive index of a converging lens is 1.4. What will be the focal length of this lens if it is placed in a medium of same refractive index ? (Assume the radii of curvature of the faces of lens are R_1 and R_2 respectively)
 - (1) 1
- /// mathongo /// mathongo (2) Infinite
 (4) Zero /// mathongo /// mathongo /// mathongo
- Q16. The de-Broglie wavelength associated with an electron and a proton were calculated by accelerating them through same potential of 100 V. What should nearly be the ratio of their wavelengths?

$$(\,m_p=1.\,00727\,{
m u},m_e=0.\,00055\,{
m u})$$

 $(1)\ 1860:1$

 $(2) (1860)^2 : 1$

(3) 41.4 : 1

- (4) 43 : 1 mathongo ///
- Q17. The half-life of Au^{198} is 2. 7 days. The activity of 1. 50 mg of Au^{198} , if its atomic weight is 198 g mol^{-1} is, $(N_A=6 imes 10^{23}~{
 m mol}^{-1})$ ongo /// mathongo /// mathongo /// mathongo
 - (1) 240 Ci

(2) 357 Ci

Q18. Calculate the time interval between	een 33% decay and 6	57% decay if half-life	e of a substance is 2	0 min.nathongo							
(1) 60 min	on o o accur and	(2) 20 min									
// (3) 40 min /// mathongo		(4) 13 min ongo									
Q19. The following logic gate is equivalent to: mathongo											
mathongo mathongo		okudo									
/// mathongo /// mathongo											
(1) NOR Gate		(2) OR Gate									
(3) AND Gate mothongo		(4) NAND Gate									
Q20. Two identical antennas mounted What should nearly be the minin (Assume radius of earth is 6400	num height of receiv km)		ve the signals in line	e of sight ?							
(1) 19.77 m		(2) 39.55 m									
(3) 79.1 m		(4) 158. 2 m									
Q21. A body of mass 2 kg moves und	er a force of $\left(2\hat{\mathrm{i}}+3\right)$	$3\hat{j} + 5\hat{k}$ N It starts fr		the origin initially.							
After 4 s, its new coordinates are (Round off to the Nearest Intege		e of b is athon.									
Q22. A swimmer can swim with velocity of 12 km/h in still water. Water flowing in a river has velocity 6 km/h. The direction with respect to the direction of flow of river water he should swim in order to reach the point on the other bank just opposite to his starting point is (Round off to the Nearest Integer) (find the angle in degree)											
mathong mathongo $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	mathongo	/// mathongo	mathongo	//. mathongo							
Q23. A force $\vec{F} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ is ap											
torque of this force about a point (Round off to the Nearest Intege	r)	mathongo									
Q24. A solid disc of radius a and mass m rolls down without slipping on an inclined plane making an angle θ with the horizontal. The acceleration of the disc will be $\frac{2}{b}g\sin\theta$, where b is (Round off to the Nearest											
		/// mathongo									
(g = acceleration due to gravity)											
// θ = angle as shown in figure)											

JEE Main 2021 (16 Mar Shift 2) Question Paper

JEE Main Previous Year Paper MathonGo

Q29. The energy dissipated by a resistor is 10 mJ in 1 s, when an electric current of 2 mA flows through it. The resistance is _____Ω. (Round off to the Nearest Integer)

/// mathongo /// mathongo /// mathongo /// mathongo

///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q30. A deviation of 2° is produced in the yellow ray when prism of crown and flint glass are achromatically combined. Taking dispersive powers of crown and flint glass are 0.02 and 0.03 respectively and refractive

Question Paper

	d 1.6 respectively. The refracting angles for crown glass
prism will be ° (in degree)	
(Round off to the Nearest Integer)	
Q31. Identify the elements X and Y using the ionization energy (kJ/mol)	
(1) $X = Na; Y = Mg$ (3) $X = Mg; Y = Na$	(2) $X = Mg; Y = F$ (4) $X = F; Y = Mg$
Q32. The characteristics of elements X, Y and Z with ato	mic numbers, respectively, 33, 53 and 83 are:
(1) X and Y are metalloids and Z is a metal	(2) X is a metalloid, Y is a non-metal and Z is a
///. mathongo ///. mathongo ///. mathongo	
(3) X, Y and Z are metals.	(4) Xand Z are non-metals and Y is a metalloid
Q33. Statement I : Sodium hydride can be used as an oxid	lising agent. mathongo /// mathongo
Statement II: The lone pair of electrons on nitrogen Choose the CORRECT answer from the options give	in pyridine makes it basic.
(1) Both statement I and statement II are false	(2) Statement I is true but statement II is false
(3) Statement I is false but statement II is true	(4) Both statement I and statement II are true
Q34. The exact volumes of 1 M NaOH solution required	to neutralise 50 mL of 1 M H ₃ PO ₃ solution and 100 mL
of 2 M H ₃ PO ₂ solution, respectively, are:	
(1) 100 mLand 100 mL	(2) 100 mL and 50 mL
(3) 100 mL and 200 mL	(4) 50 mL and 50 mL mothongo // mothongo
Q35. The correct statements about H_2O_2 are : athongo (A) used in the treatment of effluents.	
(B) used as both oxidising and reducing agents.(C) the two hydroxyl groups lie in the same plane.	
(D) miscible with water. Choose the correct answer from the options given be	///. mathongo ///. mathongo ///. mathongo
(1) (A), (B), (C) and (D) (3) (B), (C) and (D) only	(2) (A), (B) and (D) only (4) (A), (C) and (D) only
Q36. The INCORRECT statement regarding the structure	
(1) The six-membered rings are fused to both six and	a(2) Each carbon atom forms three sigma bonds.
five-membered rings.	

- membered rings.
- (3) The five-membered rings are fused only to six- (4) It contains 12 six-membered rings and 24 fivemembered rings.
- Q37. An unsaturated hydrocarbon X on ozonolysis gives A. Compound A when warmed with ammoniacal silver nitrate forms a bright silver mirror along the sides of the test tube. The unsaturated hydrocarbon X is:

mathongo
$$CH_3 - C = C + CH_3$$
 mathongo (2) matho CH_3 mathongo $CH_3 - C = CH_3$ mathongo $CH_3 - CH_3$ mathongo

(3)
$$HC \equiv C - CH_2 - CH_3$$

$$(4) CH_3 - C \equiv C - CH_3$$

Q38. The green house gas/es is (are):

- - (A) Carbon dioxide
 - (B) Oxygen (C) Water vapour
 - (D) Methane

//. mathongo ///. mathongo ///. mathongo ///. mathongo

Choose the most appropriate answer from the options given below:

- (1) (A) and (C) only othongo mothongo
- (2) (A) only mathongo mathongo

(3) (A), (C) and (D) only

(4) (A) and (B) only

Q39. The INCORRECT statements below regarding colloidal solutions is:

- (1) A colloidal solution shows colligative properties. (2) An ordinary filter paper can stop the flow of colloidal particles.
- (3) The flocculation power of Al³⁺ is more than that (4) A colloidal solution shows Brownian motion of colloidal particles.

Q40. Which of the following reduction reaction CANNOT be carried out with coke? mathongo

(1) $Al_2 O_3 \rightarrow Al$

- (2) $ZnO \rightarrow Zn$
- (3) $\operatorname{Fe}_2\operatorname{O}_3 \to \operatorname{Fe}_{\operatorname{mothongo}}$ mathongo
- (4) $Cu_2 O \rightarrow Cu$

 $\mathbf{Q41.Fex}_2$ and \mathbf{Fey}_3 are known when x and y are :

- (1) x = F, Cl, Br, I and y = F, Cl, Br and y = F, Cl, Br, I
- (3) x = Cl, Br, I and y = F, Cl, Br, I
- (4) x = F, Cl, Br, I and y = F, Cl, Br, I

Q42. Arrange the following metal complex/ compounds in the increasing order of spin only magnetic moment. Presume all the three, high spin system.

- (Atomic numbers Ce = 58, Gd = 64 and Eu = 63.)
- (a) $(NH_4)_2[Ce(NO_3)_6]$
- (b) $\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}$ and $\mathrm{athongo}$ ///////// mathongo //// mathongo //// mathongo
- (c) Eu $(NO_3)_3$
- (1) (b) < (a) < (c) athongo (2) (c) < (a) < (b) (b) (a) < (b) (b) (b)

(4) (a) < (c) < (b)

(3) (a) < (b) < (c)

JEE Main Previous Year Paper MathonGo

JEE Main Previous Year Paper

Question Paper MathonGo

n(1)hoppathongo
matho NH ₂
The another than the second

mathong
$$^{\prime\prime\prime}$$
 mathong $^{\prime\prime\prime}$ mathong $^{\prime\prime\prime}$

Q48. Which of the following polymer is used in the manufacture of wood laminates?

(1) cis-poly isoprene

(2) Melamine formaldehyde resin

(3) Urea formaldehyde resin

(4) Phenol and formaldehyde resin

Q49. Match List-I with List-II

List-I

Test/Reagents/Observation(s)

- (a) Lassaigne's Test
- (b) Cu(II) oxide
- (c) Silver nitrate

- Species detected
- (i) Carbon
- (ii) Sulphur
- N, S, P, and (iii) halogen
- The sodium fusion extract gives black precipitate with acetic acid and lead acetate
- Halogen Specifically

The correct match is:

- (1) (a) (iii), (b) (i), (c) (ii), (d) (iv)
- (2) (a) (i), (b) (iv), (c) (iii), (d) (ii)
- (3) (a) (iii), (b) (i), (c) (iv), (d) (ii)
- (4) (a) (i), (b) (ii), (c) (iv), (d) (iii)

Q50. The secondary structure of protein is stabilised by:

(1) Peptide bond

(2) glycosidic bond

(3) Hydrogen bonding

(4) van der Waals forces

Q51. When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate solution, $\times 10^{-5}$ moles of lead sulphate precipitate out. (Round off to the Nearest Integer).

Q52. The number of orbitals with n = 5, $m_1 = +2$ is _____. (Round off to the Nearest Integer).

Q53. At 25°C, 50 g of iron reacts with HCl to form FeCl₂. The evolved hydrogen gas expands against a constant pressure of 1 bar. The work done by the gas during this expansion is -_____ J. (Round off to the Nearest Integer)

[Given : $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$. Assume, hydrogen is an ideal gas]

Question Paper

// [Atomic mass off Fe is 55.85 u] // mothongo ///	
Q54. Sulphurous acid $(H_2 SO_3)$ has $Ka_1 = 1.7 \times 10^{-2}$ and $Ka_2 = 1.7 \times 10^{-2}$ and $Ka_3 = 1.7 \times 10^{-2}$ and $Ka_4 = 1.7 \times 10^{-2}$ and $Ka_5 = 1.7 \times 10^{-2}$ and Ka_5	$ m a_2 = 6.4 imes 10^{-8}$. The pH of 0.588 M $ m H_2SO_3$ mathons
Q55. In Duma's method of estimation of nitrogen, 0.1840 g collected at 287 K and 758 mm of Hg pressure. The pe (Round off to the Nearest Integer). [Given: Aqueous tension at 287 K = 14 mm of Hg]	
Q56. Ga (atomic mass 70 u) crystallizes in a hexagonal close p of Ga is $____ \times 10^{21}$. (Round off to the Nearest Integral of Ga is $____$	_
Q57. At 363 K, the vapour pressure of A is 21 kPa and that of mixed. Assuming that this solution is ideal, the vapour pr to the Nearest Integer).	
Q58. A 5.0 m mol dm ⁻³ aqueous solution of KCl has a constant 1.3 cm ⁻¹ . The molar conductivity of this solution Nearest Integer)	
Q59. A and B decompose via first order kinetics with half-live an equimolar non-reactive mixture of A and B, the time t that of B is min. (Round off to the Nearest Integer	aken for the concentration of A to become 16 times
Q60. $[{ m Ti}({ m H}_2{ m O})_6]^{3+}$ absorbs light of wavelength 498 nm during for the above complex is $ imes 10^{-19}$ J. (Round off h = 6.626 $ imes 10^{-34}$ Js; $c=3 imes 10^8$ ms ⁻¹ .	
Q61. The least value of $ z $ where z is comp $e^{\left(\frac{(z +3)(z -1)}{ z +1 }\log_{\mathrm{e}}2\right)} \geq \log_{\sqrt{2}} \left 5\sqrt{7}+9i\right , i=\sqrt{-1}, ext{is equal}$	
	$\sqrt{5}$ nathongo /// mathongo /// mathongo
	se points from different sides as vertices and β be the
Q63. Let $A(-1,1)$, $B(3,4)$ and $C(2,0)$ be given three points. at point P and Q respectively. Let A_1 and A_2 be the area	A line $y=mx,\ m>0$, intersects lines AC and BC
$A_1=3A_2$, then the value of m is equal to : $(1) \frac{4}{15} \qquad (2)$ $(3) \ 2 \qquad (4)$	1 mathongo ///. mathongo ///. mathongo

JEE Main Previous Year Paper MathonGo

Question Paper

Q64. Let the lengths of intercepts on x -axis and y -axis made by the circle $x^2 + y^2 + ax + 2ay + c = 0$, (a < 0) be $2\sqrt{2}$ and $2\sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line x + 2y = 0, is equal to :

(1) $\sqrt{11}$

- (3) $\sqrt{6}$
- /// mathongo /// mathongo (4) $\sqrt{10}$ thongo /// mathongo /// mathongo

Q65. Let C be the locus of the mirror image of a point on the parabola $y^2 = 4x$ with respect to the line y = x. Then the equation of tangent to C at P(2,1) is: Mongo W. mathongo W. mathongo

(1) x - y = 1

(2) 2x + y = 5

- x = 3y = 5 mathongo /// mathongo (4) x + 2y = 4 mathongo /// mathongo

Q66. If the points of intersection of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the circle $x^2 + y^2 = 4b$, b > 4 lie on the curve $y^2 = 3x^2$, then b is equal to:

- ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q67. Let $A = \{2, 3, 4, 5, \dots, 30\}$ and $\prime \simeq \prime$ be an equivalence relation on $A \times A$, defined by $(a, b) \simeq (c, d)$, if and only if ad = bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4,3) is equal to : mathongo /// mathongo /// mathongo /// mathongo

 $(1)\ 5$

- (3) 8 mathongo /// mathongo /// mathongo /// mathongo

 $\sin^2 x$ $1 + \cos^2 x \cos 2x$ O68. The maximum value of $f(x) = \left| 1 + \sin^2 x \log \cos^2 x \right| / \left| \cos 2x \right|, \; x \in R$ is $\left| -\cos x \right| / \left| \cos x \right| = 1$ $\cos^2 x = \sin 2x$

- $(1)\sqrt{7}$ ngo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo // math

Q69. Given that the inverse trigonometric functions take principal values only. Then, the number of real values of xwhich satisfy $\sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}x$ is equal to: (1) 2 ongo /// mathongo /// mathongo /// mathongo /// mathongo

(3) 3

Let $\alpha \in R$ be such that the function $f(x) = \begin{cases} \frac{\cos^{-1}\left(1 - \{x\}^2\right)\sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^3}, & x \neq 0 \\ \alpha, & \text{is continuous at } x = 0, \text{ where } x = 0 \end{cases}$

 $\{x\} = x - [x], [x]$ is the greatest integer less than or equal to x. Then:

- $\alpha = \frac{\pi}{\sqrt{2}}$ /// mathongo /// mathongo (2) $\alpha = 0$ hongo /// mathongo /// mathongo

(3) no such α exists

(4) $\alpha = \frac{\pi}{4}$

Q71. Let $f: S \to S$ where $S = (0, \infty)$ be a twice differentiable function such that f(x+1) = xf(x). If $g: S \to R$ be defined as $g(x) = \log_e f(x)$, then the value of |g''(5) - g''(1)| is equal to : $(1) \frac{205}{144}$ (2) $\frac{197}{144}$

 $(1) \frac{205}{144}$

mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

JEE Main Previous Year Paper

Question Paper

MathonGo

Q72. Let f be a real valued function, defined on $R-\{-1,1\}$ and given by $f(x)=3\log_e\left|\frac{x-1}{x+1}\right|-\frac{2}{x-1}$. Then in which of the following intervals, function f(x) is increasing?

- $(1) \left(-\infty,-1\right) \cup \left(\left[\tfrac{1}{2},\infty\right)-\left\{1\right\}\right) \text{ mathongo } (2) \left(-\infty,\infty\right)-\left\{-1,1\right\} \text{ mathongo } \text{ matho$

 $(3) \left(-1, \frac{1}{2}\right]$

 $(4) \left(-\infty, \frac{1}{2}\right] - \{-1\}$

Q73. Consider the integral $I=\int_0^{10} \frac{[x]e^{[x]}}{e^{x-1}}dx$ where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to: (2) 45(e+1) mathongo /// mathongo /// mathongo //// mathongo

(1) 9(e-1)

(3) 45(e-1)

(4) 9(e+1)

mathong mathong mathons mathons mathons mathons mathons $P(x) = x^2 + bx + c$ be a quadratic polynomial with real coefficients such that $\int_0^1 P(x) dx = 1$ and P(x)leaves remainder 5 when it is divided by (x-2) Then the value of 9(b+c) is equal to:

(1)9

(2) 15

(4) 11 mathongo /// mathongo /// mathongo Q75. If y=y(x) is the solution of the differential equation $\frac{dy}{dx}+(\tan x)y=\sin x, 0\leq x\leq \frac{\pi}{3}$, with y(0)=0, then $y(\frac{\pi}{4})$ is equal to mathongo ///. mathongo ///.

 $(1) \frac{1}{4} \log_e 2$

(2) $\left(\frac{1}{2\sqrt{2}}\right)\log_e 2$

- (3) $\log_e 2$ /// mathongo /// mathongo (4) $\frac{1}{2}\log_e 2$ ongo /// mathongo /// mathongo

Q76. Let C_1 be the curve obtained by the solution of differential equation $2xy\frac{dy}{dx}=y^2-x^2,\ x>0$. Let the curve C_2 be the solution of $\frac{2xy}{x^2-y^2}=\frac{dy}{dx}$. If both the curves pass through (1,1), then the area (in sq. units) enclosed by the curves C_1 and C_2 is equal to :

(1) $\pi - 1$

(3) $\pi + 1$

 $\textbf{Q77.} \underset{\text{Let }\overrightarrow{a} = \hat{\textbf{i}} + 2\hat{\textbf{j}} - 3\hat{\textbf{k}} \text{ and } \overrightarrow{b} = 2\hat{\textbf{i}} - 3\hat{\textbf{j}} + 5\hat{\textbf{k}}. \text{ If } \overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{r,r} \cdot \left(\alpha\hat{\textbf{i}} + 2\hat{\textbf{j}} + \hat{\textbf{k}}\right) = 3 \text{ and }$ $\overrightarrow{r}\cdot\left(2\hat{\mathbf{i}}+5\hat{\mathbf{j}}-\alpha\widehat{\mathbf{k}}\right)=-1, lpha\in R,$ then the value of $\alpha+\left|\overrightarrow{r}\right|^2$ is equal to :

- (1) 9 (3) 13 mathongo mat

Q78. If (x, y, z) be an arbitrary point lying on a plane P which passes through the point (42, 0, 0), (0, 42, 0) and (0,0,42),expression

- $3 + \frac{x-11}{(y-19)^2(z-12)^2} + \frac{y-19}{(x-11)^2(z-12)^2} + \frac{z-12}{(x-11)^2(y-19)^2} \frac{x+y+z}{14(x-11)(y-19)(z-12)} \text{ is }$ mathongo
- (1) 0

- n (3) 39 ngo ///. mathongo ///. mathongo (4) -45 thongo ///. mathongo ///. mathongo

Q79. If the foot of the perpendicular from point (4,3,8) on the line $L_1: \frac{x-a}{l} = \frac{y-2}{3} = \frac{z-b}{4}$, $l \neq 0$ is (3,5,7), then the shortest distance between the line L_1 and line $L_2: \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is equal to

- (1) $\frac{1}{2}$ (2) $\frac{1}{\sqrt{6}}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\frac{1}{\sqrt{3}}$ mathongo (7) mathongo (8) mathongo (9) mathongo (10) mathongo (11) $\frac{1}{2}$

JEE Main Previous Year Paper

MathonGo

Question Paper

Q80. Let A denote the event that a 6-digit integer formed by 0, 1, 2, 3, 4, 5, 6 without repetitions, be divisible by 3.

- Then probability of event A is equal to:
- (1) $\frac{9}{56}$ ngo /// mathongo /// mathongo (2) $\frac{4}{9}$ mathongo /// mathongo /// mathongo (3) $\frac{3}{7}$
- **Q81.** Let $\frac{1}{16}$, a and b be in G.P. and $\frac{1}{a}$, $\frac{1}{b}$, 6 be in A.P., where a, b > 0. Then 72(a+b) is equal to ______.
- Q82. Let $S_n(x) = \log_{a^{1/2}} x + \log_{a^{1/3}} x + \log_{a^{1/6}} x + \log_{a^{1/11}} x + \log_{a^{1/18}} x + \log_{a^{1/27}} x + \dots$ up to n-terms, where a > 1. If $S_{24}(x) = 1093$ and $S_{12}(2x) = 265$, then value of a is equal to ______.
- Q83. Let n be a positive integer. Let $A = \sum_{k=0}^{n} (-1)^k \times {}^nC_k \Big[\big(\frac{1}{2}\big)^k + \big(\frac{3}{4}\big)^k + \big(\frac{7}{8}\big)^k + \big(\frac{15}{16}\big)^k + \big(\frac{31}{32}\big)^k \Big]$. If $63A = 1 \frac{1}{2^{30}}$, then n is equal to ______.

Q84. Consider the statistics of two sets of observations as follows:

	Size	Mean	Variance		
Observation I	10	2	2		
Observation II	n	3	/// modthongo		

If the variance of the combined set of these two observations is $\frac{17}{9}$, then the value of n is equal to ______

- Q85. In \triangle ABC, the lengths of sides AC and AB are 12 cm and 5 cm, respectively. If the area of \triangle ABC is 30 cm² and R and r are respectively the radii of circumcircle and incircle of \triangle ABC, then the value of 2R + r (in cm) is equal to _____.
- Q86. Let $A=\begin{bmatrix}a_1\\a_2\end{bmatrix}$ and $B=\begin{bmatrix}b_1\\b_2\end{bmatrix}$ be two 2×1 matrices with real entries such that A=XB, where $X=\frac{1}{\sqrt{3}}\begin{bmatrix}1&-1\\1&k\end{bmatrix}$, and $k\in R$. If $a_1^2+a_2^2=\frac{2}{3}\left(b_1^2+b_2^2\right)$ and $\left(k^2+1\right)b_2^2\neq -2$ b_1b_2 , then the value of k is
- Q87. Let $f:R \to R$ and $g:R \to R$ be defined as $f(x) = \begin{cases} x+a, & x < 0 \\ |x-1|, & x \geq 0 \end{cases}$ and $g(x) = \begin{cases} x+1, & x < 0 \\ (x-1)^2 + b, & x \geq 0 \end{cases}$ where $a,\ b$ are non-negative real numbers. If gof(x) is continuous for all $x \in R$, then a+b is equal to
- **Q88.** For real numbers α, β, γ and δ , if $\int \frac{(x^2-1)+\tan^{-1}\left(\frac{x^2+1}{x}\right)}{(x^4+3x^2+1)\tan^{-1}\left(\frac{x^2+1}{x}\right)} dx = \alpha \log_e\left(\tan^{-1}\left(\frac{x^2+1}{x}\right)\right) + \beta \tan^{-1}\left(\frac{\gamma(x^2-1)}{x}\right) + \delta \tan^{-1}\left(\frac{x^2+1}{x}\right) + C \text{ where C is an arbitrary constant, then the value of } 10(\alpha+\beta\gamma+\delta) \text{ is equal to } ___.$
- Q89. Let \overrightarrow{c} be a vector perpendicular to the vectors $\overrightarrow{a} = \hat{i} + \hat{j} \hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} + \hat{k}$. If $\overrightarrow{c} \cdot (\hat{i} + \hat{j} + 3\hat{k}) = 8$, then the value of $\overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b})$ is equal to
- **Q90.** If the distance of the point (1, -2, 3) from the plane x + 2y 3z + 10 = 0 measured parallel to the line, $\frac{x-1}{3} = \frac{2-y}{m} = \frac{z+3}{1}$ is $\sqrt{\frac{7}{2}}$, then the value of |m| is equal to _____. mathons

ANSWER	KEYS	menhengo	///.	mathango	///.		ngo	74.	muliongo	///.	marinongo
1. (4) nathon 2	2. (2)	3. (4)	14.	4. (3)	5. (4	matho	6. (4) ///.	7. (4)	/4.	8. (1) hongo
9. (1)	10. (4)	11. (3)		12. (3)	13. ((3)	14. (1)	15. (2)		16. (4)
17. (2) athon	18. (2)	19. (1)		20. (2)	21. ((12)athor	22. (120)	23. (20)		24. (3)
25. (3)	26. (-113	27. (4)		28. (3)	29. ((2500)	30. (12)	31. (1)		32. (2)
33. (3)	34. (3)	35. (2)		36. (4)	37. ((3)	38. (3)	39. (2)		40. (1)
41. (1) athon	42. (4)	43. (3)		44. (3)	45. ((3)	46. (3)	47. (4)		48. (3)
49. (3)	50. (3)	51. (525)		52. (3)	53. ((2218)	54. (1)	55. (19)		56. (15)
57. (19) thon:	58. (14)	59. (108)		60. (4) ongo	61. ((1)nathor	62. (4)″	63. (2)		64. (3) ongo
65. (1)	66. (1)	67. (4)		68. (3)	69. ((3)	70. (3)	71. (1)		72. (1)
73. (3)	74. (3)	75. (2)		76. (2)	77. ((2)	78. (2)	79. (2)		80. (2)
81. (14)	82. (16)	83. (6)		84. (5)	85. ((15) mathor	86. (1)	87. (1)		88. (6)
89. (28)	90. (2)										