Q1. The time period of a simple pendulum is given by $T=2\pi\sqrt{\frac{l}{q}}$. The measured value of the length of the pendulum is 10 cm known to a 1 mm accuracy. The time for 200 oscillations of the pendulum is found to be 100 second using a clock of 1s resolution. The percentage accuracy in the determination of q using this pendulum is x. The value of x to the nearest integer is:-

(1) 2%

mathongo (2) 3% athongo

(3) 5%

(4) 4%

Q2. The position, velocity and acceleration of a particle moving with a constant acceleration can be represented by :

Q3. A constant power delivering machine has towed a box, which was initially at rest, along a horizontal straight line. The distance moved by the box in time t is proportional to :-

- (1) $t^{\frac{2}{3}}$
- mathongo mathongo mathongo mathongo mathongo mathongo mathongo

Q4. A thin circular ring of mass M and radius r is rotating about its axis with an angular speed ω . Two particles having mass m each are now attached at diametrically opposite points. The angular speed of the ring will become:

 $(1) \omega \frac{M}{M+m}$

Q5. The time period of a satellite in a circular orbit of the radius R is T. The period of another satellite in a circular orbit of the radius 9R is:

(1) 9T

- $(2)\ 27T$
- (3) $12T_{\text{ngo}}$ ///. mathongo ///. mathongo (4) $3T_{\text{nathongo}}$ ///.

Q6. The P-V diagram of a diatomic ideal gas system going under cyclic process as shown in figure. The work done during an adiabatic process CD is (use $\gamma=1.4$) :

JEE Main 2021 (18 Mar Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

- Q7. What will be the average value of energy along one degree of freedom for an ideal gas in thermal equilibrium at a temperature T? (k_B is Boltzmann constant) $^{\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo
 - $(1) \frac{1}{2} k_{\rm B} T$

 $(3) \frac{3}{2} k_{\rm B} T$

- Q8. In the experiment of Ohm's law, a potential difference of 5.0 V is applied across the end of a conductor of length 10.0 cm and diameter of 5.00 mm. The measured current in the conductor is 2.00 A. The maximum permissible percentage error in the resistivity of the conductor is :-
 - (1) 3.9

- (3) 7.5
- $\frac{(2) 8.4}{(4) 3.0}$ mathongo $\frac{(2) 8.4}{(4) 3.0}$ mathongo $\frac{(2) 8.4}{(4) 3.0}$ mathongo
- Q9. Four identical long solenoids A, B, C and D are connected to each other as shown in the figure. If the magnetic field at the center of A is 3 T the field at the center of C would be: (Assume that the magnetic field is confined with in the volume of respective solenoid).

- mathongo (2) 6 T mathongo (4) 1 T mathongo (4) 1 T mathongo
- (3) 9 T
 - Q10. A loop of flexible wire of irregular shape carrying current is placed in an external magnetic field. Identify the effect of the field on the wire.
 - (1) Loop assumes circular shape with its plane normal to the field.
 - (2) Loop assumes circular shape with its plane parallel to the field.
 - (3) Wire gets stretched to become straight.
 - (4) Shape of the loop remains unchanged.
- **Q11.** In a scries LCR resonance circuit, if we change the resistance only, from a lower to higher value :

- (1) The bandwidth of resonance circuit will increase. // mothonoo
- (2) The resonance frequency will increase.
- (3) The quality factor will increase.
- (4) The quality factor and the resonance frequency will remain constant.
- Q12. An AC source rated 220 V, 50 Hz is connected to a resistor. The time taken by the current to change from its maximum to the rms value is:
 - (1) 2.5 ms

mathongo (2) 25 ms longo

(3) 2.5 s

- (4) 0.25 ms
- Q13. A plane electromagnetic wave of frequency 100 MHz is traveling in a vacuum along the x-direction. At a particular point in space and time, $\overrightarrow{B} = 2.0 \times 10^{-8} \, \widehat{\text{k}} \text{T} \cdot \text{(where, } \widehat{k} \text{ is unit vector along } z\text{-direction)}$ What is \overrightarrow{E} at this point?

 - (1) $0.6\hat{j} \text{ V m}^{-1}$ (3) $6.0\hat{j} \text{ V m}^{-1}$ (4) $0.6\hat{k} \text{ V m}^{-1}$

- Q14. Your friend is having eye sight problem. She is not able to see clearly a distant uniform window mesh and it appears to her as nonuniform and distorted. The doctor diagnosed the problem as:
 - (1) Astigmatism
- (2) Myopia with Astigmatism
- (3) Presbyopia with Astigmatism

- (4) Myopia and hypermetropia
- Q15. In Young's double slit arrangement, slits are separated by a gap of 0.5 mm, and the screen is placed at a distance of 0.5 m from them. The distance between the first and the third bright fringe formed when the slits are illuminated by a monochromatic light of 5890 Å is :-

 - (1) 1178×10^{-9} m (2) 1178×10^{-6} m (4) 5890×10^{-7} m

- Q16. An oil drop of the radius 2 mm with a density 3 g cm⁻³ is held stationary under a constant electric field $3.55 \times 10^5 \ \mathrm{V m^{-1}}$ in the Millikan's oil drop experiment. What is the number of excess electrons that the oil drop will possess? (consider $g = 9.81 \text{ m s}^{-2}$).
 - (1) 48.8×10^{11}

(2) 1.73×10^{10}

(3) 17.3×10^{10}

- (4) 1.73×10^{12}
- Q17. A particle is travelling 4 times as fast as an electron. Assuming the ratio of de-Broglie wavelength of a particle to that of electron is 2: 1, the mass of the particle is:
 - (1) $\frac{1}{16}$ times the mass of e⁻

(2) 8 times the mass of e

- (3) 16 times the mass of e^-
- (4) $\frac{1}{8}$ times the mass of e^-
- Q18. Imagine that the electron in a hydrogen atom is replaced by a muon (μ) . The mass of muon particle is 207 times that of an electron and charge is equal to the charge of an electron. The ionization potential of this hydrogen atom will be:-
 - $(1) 13.6 \,\mathrm{eV}$

 $(2)\ 2815.\ 2\,\mathrm{eV}$

 $(3) 331.2 \,\mathrm{eV}$

 $(4) 27.2 \,\mathrm{eV}$

JEE Main 2021 (18 Mar Shift 1)

JEE Main Previous Year Paper MathonGo

Question Paper

Q19. A radioactive sample disintegrates via two independent decay processes having half lives $T_{1/2}^{(1)}$ and $T_{1/2}^{(2)}$ hongo respectively. The effective half- life $T_{1/2}$ of the nuclei is :

- /// mathongo (2) $T_{1/2} = T_{1/2}^{(1)} + T_{1/2}^{(2)}$ mathongo //// mathongo

- $T_{1/2} = rac{T_{1/2}^{(1)}T_{1/2}^{(2)}}{T_{1/2}^{(1)}+T_{1/2}^{(2)}}$ athongo
- (4) None of the above mathongo

Q20. Match List-I with List-II.

List-I

- List-II (i) Thermosphere mathongo

- (a) 10 km height over earth's surface
- (ii) Mesosphere
- (b) 70 km height over earth's surface
- (iii) Stratosphere
- (c) 180 km height over earth's surface (d) 270 km height over earth's surface
- (1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i) (2) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
- (iv) Troposphere
- (3) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
- (4) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
- Q21. A person is swimming with a speed of 10 m s⁻¹ at an angle of 120° with the flow and reaches to a point directly opposite on the other side of the river. The speed of the flow is $x \text{ m s}^{-1}$. The value of x to the nearest integer is
- Q22. A bullet of mass 0.1 kg is fired on a wooden block to pierce through it, but it stops after moving a distance of 50 cm into it. If the velocity of the bullet before hitting the wood is 10 m s⁻¹ and, it slows down with uniform deceleration, then the magnitude of effective retarding force on the bullet is x N. The value of x to the nearest integer is,
- Q23. As shown in the figure, a particle of mass 10 kg is placed at a point A. When the particle is slightly displaced to its right, it starts moving and reaches the point B. The speed of the particle at B is $x \text{ m s}^{-1}$. (Take $g = 10 \text{ m s}^{-2}$) The value of x to the nearest integer is mothonic

Q24. A ball of mass 10 kg moving with a velocity $10\sqrt{3}$ m s⁻¹ along the x -axis, hits another ball of mass 20 kg which is at rest. After the collision, first ball comes to rest while the second ball disintegrates into two equal pieces. One piece starts moving along y -axis with a speed of 10 m s^{-1} . The second piece starts moving at an angle of 30° with respect to the x -axis. The velocity of the ball moving at 30° with x -axis is $x \text{ m s}^{-1}$. The configuration of pieces after the collision is shown in the figure below. The value of x to the nearest integer is

JEE Main 2021 (18 Mar Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

- Q25. Two separate wires A and B are stretched by 2 mm and 4 mm respectively, when they are subjected to a force of 2 N. Assume that both the wires are made up of same material and the radius of wire B is 4 times that of the radius of wire A. The length of the wires A and B are in the ratio of a: b. Then $\frac{a}{b}$ can be expressed as $\frac{1}{x}$, where x is _____.
- **Q26.** A particle performs simple harmonic motion with a period of 2 second. The time taken by the particle to cover a displacement equal to half of its amplitude from the mean position is $\frac{1}{a}$ s. The value of a to the nearest integer is
- Q27. A parallel plate capacitor has plate area 100 m^2 and plate separation of 10 m. The space between the plates is filled up to a thickness 5 m with a material of dielectric constant of 10. The resultant capacitance of the system is x pF. The value of $\varepsilon_0 = 8.85 \times 10^{-12}$ F m⁻¹. The value of x to the nearest integer is _____.
- Q28. The circuit shown in the figure consists of a charged capacitor of capacity 3 μ F and a charge of 30 μ C. At time t=0, when the key is closed, the value of current flowing through the 5 M Ω resistor is x μ A. The value of x to the nearest integer is

Q29. The voltage across the 10 Ω resistor in the given circuit is x volt. Once x mathong x mathong x

The value of x to the nearest integer is $x = \frac{1}{2} \int_{0}^{x} dx \, dx$

- Q30. An npn transistor operates as a common emitter amplifier with a power gain of 10^6 . The input circuit resistance is 100Ω and the output load resistance is $10 \, \mathrm{k} \Omega$. The common emitter current gain β will be (Round off to the Nearest Integer)
- Q31. A certain orbital has no angular nodes and two radial nodes. The orbital is:
 - (1) 2s

(2) 3s

(3) 3p

(4) 2p

 $(3) M_4 A$

MathonGo

Q32. The ionic radius of Na ⁺ ions is $1.02\mathring{A}$. The ionic radius of 1.05 and 0.99	dii (in $ { m A}$) of $ m Mg^{2+}$ and $ m Al^{3+}$, respectively, are mathons (2) $ m 0.72$ and $ m 0.54$						
(1) 1.03 and 0.99							
Reason R: The solubility product of Mg(OH) ₂ is grain the light of the above statements, choose the most (1) Both A and R are true but R is not the correct explanation of A (3) Both A and R are true and R is the correct	reater than that of MgCO ₃ . the appropriate answer from the options given below: (2) A is true but R is false (4) A and R both are false.						
mot explanation of A othongo /// mothongo							
Q34. Match List—I with List—II List—I mathongo List—I List—I L	ist— II mathongo ///. mathongo ///. mathongo						
(b) $CaSO_4 \cdot \frac{1}{2}H_2O$ (ii) O	Antacid /// mathongo /// mathongo /// mathongo						
(d) $CaCO_3$ (iv) P	Bleach mathongo mathongo mathongo laster of paris						
Choose the most appropriate answer from the (1) $a - i$, $b - iv$, $c - iii$, $d - ii$	(2) $a - iii, b - ii, c - iv, d - i$ (4) $b - ii + i$						
(3) $a - iii$, $b - iv$, $c - ii$, $d - i$ mathongo mathongo mathongo	$(4) \ a-iii, b-ii, c-i, d-iv$ $mathongo$ $mathongo$ $mathongo$ $mathongo$						
Q35. Reagent, 1-naphthylamine and sulphanilic acid in a							
(1) N_2O_3 (3) NO mathongo (3) NO	(2) NO_3^- mathongo /// mathongo (4) NO_2^-						
Q36. Compound with molecular formula C ₃ H ₆ O can show	w:///. mathongo ///. mathongo ///. mathongo						
(1) Positional isomerism	(2) Both positional isomerism and metamerism						
(3) Metamerism mothongo /// mothongo	(4) Functional group isomerism on a mathon group						
Q37. The satements that are TRUE: (A) Methane leads to both global warming and photo (B) Methane is generated from paddy fields	chemical smog						
(C) Methane is a stronger global warming gas than (D) Methane is a part of reducing smog	$ m CO_2^{\prime\prime}$ mathongo $/\prime\prime$ mathongo $/\prime\prime$ mathongo						
Choose the most appropriate answer from the option	s given below: 199 /// mathongo /// mathongo						
(1) (A), (B), (C) only	(2) (A) and (B) only						
(3) (B), (C), (D) only though (M) mathongo	(4) (A), (B), (D) only mathongo /// mathongo						
Q38. In a binary compound, atoms of element A form a hcp structure and those of element M occupy 2/3 of the tetrahedral voids of the hcp structure. The formula of the binary compound is:							
(1) M_2 A_3	$(2) M_4 A_3$						

 $(4) \mathrm{MA}_3$

JEE Main 2021 (18 Mar Shift 1)

JEE Main Previous Year Paper

Question Paper

MathonGo

Q39. The chemical that is added to reduce the	melting point of the reaction mix	xture during the extraction of thong
aluminium is:	(2) Dannita	
(1) Cryolite mothongo (2) (3) Calamine	(2) Bauxite (4) Kaolite	
(3) Calamine	(4) Kaonte	
Q40. The number of ionisable hydrogens pres	sent in the product obtained from	a reaction of phosphorus trichloride
and phosphonic acid is:		
/// n(1) 3 ongo /// mathongo /// m		
	(4) 1	
Q41. Match List—I with List—II		
List-I (process)	List—II (cataly	st) mathongo /// mathong
(a) Deacon's process	(i) $ZSM-5$	
(b) Contact process	(ii) CuCl ₂	
(c) Cracking of hydrocarbons	(iii) Ni	
(d) Hydrogenation of vegetable oils	(iv) V_2O_5	
Choose the most appropriate answer from	m the options given below-	
(1) a-ii, b-iv, c-i, d-iii	(2) a - i, b - ii, c -	-ii, d-iv mathongo /// mathong
(3) a-iii, b-i, c-iv, d-ii	(4) a - iv, b - ii, c	$-\operatorname{i},\operatorname{d}-\operatorname{iii}$
Q42. Match List—I with List—II		
List-I	List-II	
(a) hor Chlorophyllhothongo /// n	Ruthenium	
(b) Vitamin-B ₁₂	(ii) Platinum	
(c) Anticancer drug on which was a second of the second of	ngth (iii) Cobalt thongo	
(d) Grubbs catalyst	(iv) Magnesium	
Choose the most appropriate answer from	m the options given below:	
$(1) \ a-iii \ , \ b-ii, c-iv, d-i$	(2) a - iv, b - iii,	$\mathrm{c}-\mathrm{ii},\mathrm{d}-\mathrm{i}$
// (3) $a - iv, b - iii, c - i, d - ii$	nathongo (4) $a - iv, b - ii, c$	$-\operatorname{iii},\operatorname{d}_{\operatorname{m}}\operatorname{i}$ hongo ///. mathong
Q43. The correct structures of trans $-[NiBr_2]$	(PPh ₂) _o] and meridional –[Co (NH_2), (NO_2) , respectively, are:
222	nathongo /// mathongo	mathongo // mathong

JEE Main 2021 (18 Mar Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

Q45. Match List-I with List-II:

JEE Main 2021 (18 Mar Shift 1)

JEE Main Previous Year Paper MathonGo

Question Paper

mat|List=I /// mathongo /// mathList=II /// mathongo /// mathongo (Chemicals) (Use / Preparation / Constituent) (a) Alcoholic potassium hydroxide (i) Electrodes in batteries (iii) mothonogo (b) Pd/BaSO₄ (ii) Obtained by addition reaction (iii) Used for β -elimination reaction (c) BHC (Benzene hexachloride) (d) Polyacetylene (iv) Lindlar's catalyst Choose the most appropriate match (2) a - iii, b - iv, c - ii, d - i(1) a - ii, b - i, c - iv, d - iiimathongo (4) a - ii, b - iv, c - i, d - iii hongo (3) a - iii, b - i, c - iv, d - iiQ46. Alkaline KMnO₄ mathongo ///. mathongo ///. mathongo OCH₃ Considering the above chemical reaction, identify the product X: CH,OH OCH₃ mathcOCH, ///. mathongo COOH (4) (3) OCH₃ Q47. mat NH2

Considering the above reaction, X and Y respectively are:

///. $r(1)$ hong $+$ $r(2)$ mathong ///. mathong ///. mathong ///. mathong ///. mathong
mathon wathongo wathongo wathongo wathongo wathongo
and and mathongo mathongo mathongo mathongo mathongo mathongo
///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
mathering N N with the Nithongo W mathongo W mathongo W mathongo
///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
mathongo and thongo /// mathongo /// mathongo /// mathongo /// mathongo
///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
mathongo /// mathongo /// mathongo /// mathongo /// mathongo
///. mathongo ///. mathongo ///. H_3 Chong CH_3 mathongo ///. mathongo ///. mathongo
Q48.natiC≡N /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
methon of H^+/H_2O though H^+/H_2O mathong H^-/H_2O mathon H^-/H_2O mathon H^-/H_2O mathong H^-/H_2O mathong H^-/H_2O mathon H^-/H_2O mathong H^-/H_2O mathong H^-/H
Consider the above chemical reaction and identify product A thongo /// mathongo /// mathongo
(1) CH ₂ NH ₂ (2) CH ₂ NO ₂ (2) mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///
/// mathongo /// mathongo /// mathongo /// mathongo
Ċ=N-OH

Q49. Match the list—I with list—II mathong mathong mathong

List-I

List-II

Novestrol

mathon (Class of Drug) and mathona mathona

- (Example)

Antacid (a)

- matho(ii)
- Cimetidine

Antifertility

- mathongo /// matho(iv)
 - Valium

(d) Tranquilizers

- Alitame

(1) a - ii, b - iv, c - i, d - iii

(2) a -iv, b -i, c -ii, d -iii

(3) a -iv, b -iii, c -i, d -ii

(b) Artificial sweetener

mathongo (4) a - ii, b - iv, c - iii, d - iongo

(i)

Q50. A non-reducing sugar A hydrolyses to give two reducing mono saccharides. Sugar A is

(1) Fructose

(2) Galactose

(3) Glucose

(4) Sucrose

grams of 3-Hydroxy propanal (MW = 74) must be dehydrated to produce 7.8 g of acrolein $(MW = 56)(C_3H_4O)$ if the percentage yield is 64. (Round off to the Nearest Integer). [Given: Atomic masses: C: 12.0u, H: 1.0u, O: 16.0u]

Q52. Complete combustion of 3 g of ethane gives $x \times 10^{22}$ molecules of water. The value of x is to the Nearest Integer).

 $[{
m Use}:{
m N_A}=6.023 imes10^{23}; {
m Atomic\ masses\ in\ u:\ C:\ 12.0\ ;\ O:\ 16.0\ ;\ H:\ 1.0]}$ muthon of

Q53. AX is a covalent diatomic molecule where A and X are second row elements of periodic table. Based on Molecular orbital theory, the bond order of AX is 2.5. The total number of electrons in AX is (Round off to the Nearest Integer).

Q54. For the reaction

$$C_2H_6 \rightarrow C_2H_4 + H_2$$

the reaction enthalpy $\Delta_r H$ in kJmol⁻¹ is

(Round off to the Nearest Integer).

[Given : Bond enthalpies in $kJmol^{-1}:C-C:$ | mathongo | mathon

347, C = C : 611; C - H : 414, H - H : 436

Q55. In order to prepare a buffer solution of pH 5. 74, sodium acetate is added to acetic acid. If the concentration of acetic acid in the buffer is 1.0 M, the concentration of sodium acetate in the buffer is M. (Round off to the Nearest Integer). [Given: $pKa(acetic\ acid) = 4.74$]

Q56. 2 molal solution of a weak acid HA has a freezing point of 3.885°C. The degree of dissociation of this acid is $\times 10^{-3}$. (Round off to the Nearest Integer). [Given : Molal depression constant of water $= 1.85 \,\mathrm{K} \,\mathrm{kg} \,\mathrm{mol}^{-1}$ Freezing point of pure water $= 0 \,\mathrm{^{\circ}C}$ multiplication $= 1.85 \,\mathrm{K} \,\mathrm{kg}$

Q57. For the reaction

$$2\,\mathrm{Fe^{3+}}\big(\mathrm{aq}\big) + 2\mathrm{I^-}\big(\mathrm{aq}\big) \rightarrow 2\,\mathrm{Fe^{2+}}\big(\mathrm{aq}\big) + \mathrm{I_2}\big(\;\mathrm{s}\big)$$

the magnitude of the standard molar free energy change, $\Delta_r G_m^\circ = -$ ___kJ (Round off to the Nearest Integer).

MathonGo

$$\begin{bmatrix} E_{Fe^{2+}\,/\,Fe(s)}^{\circ} = -0.440V; E_{Fe^{3+}\,/\,Fe(s)}^{0} = -0.036V \\ E_{I_{2}/2I^{-}}^{\circ} = 0.539V; \quad F = 96500C \\ \end{bmatrix}_{hongo}^{mathongo} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

 $\mathbf{Q58.2\,NO(g)} + \mathrm{Cl_2(g)} \rightleftharpoons 2\,\mathrm{NOCl(s)}$ mathong // mathong //

This reaction was studied at -10° C and the following data was obtained

run $[NO]_0$ $[Cl_2]_0$ r_0 0.100.100.180.100.200.35

0.200.20

 $[NO]_0$ and $[Cl_2]_0$ are the initial concentrations and r_0 is the initial reaction rate. The overall order of the reaction is

(Round off to the Nearest Integer).

Q59. The total number of unpaired electrons present in the complex $K_3[Cr(oxalate)_3]$ is

Q60. A reaction of 0.1 mole of Benzylamine with bromomethane gave 23 g of Benzyl trimethyl ammonium bromide. The number of moles of bromomethane consumed in this reaction are $n \times 10^{-1}$, when n =(Round off to the Nearest Integer).

(Given: Atomic masses: C: 12.0 u, H: 1.0 u, N: 14.0 u, Br: 80.0 u)

Q61. The value of $3 + \frac{1}{4 + \frac{1}{3 + \dots}}$

(1) 1.5 + $\sqrt{3}$

mathongo (2) $2+\sqrt{3}$ ongo /// mathongo /// mathongo

(3) $3 + 2\sqrt{3}$

 $(4) 4 + \sqrt{3}$

Q62. If the equation $a|z|^2 + \overline{\alpha}z + \alpha\overline{z} + d = 0$ represents a circle where a, d are real constants then which of the following condition is correct?

 $(1) |\alpha|^2 - ad \neq 0$

(2) $|\alpha|^2 - ad > 0$ and $a \in R - \{0\}$

(3) $|\alpha|^2 - ad \ge 0$ and $a \in R$

(4) $lpha=0, a,d\in R^+$ mathona lpha mathona

Q63. The sum of all the 4-digit distinct numbers that can be formed with the digits 1, 2, 2 and 3 is:

 $(1)\ 26664$

mathongo (2) 122664 ongo /// mathongo

(3) 122234

(4) 22264

Q64. If α , β are natural numbers such that

 $100^{\alpha}-199\beta=(100)(100)+(99)(101)+(98)(102)+\ldots +(1)(199),$ then the slope of the line passing through (α, β) and origin is: ______ mathongo _____ mathongo _____ mathongo

(1)540

(2)550

n(3) 530 go /// mathongo /// mathongo /// mathongo /// mathongo

Q65. $\frac{1}{3^2-1} + \frac{1}{5^2-1} + \frac{1}{7^2-1} + \ldots + \frac{1}{(201)^2-1}$ is equal to

 $(1) \frac{101}{404}$ $(3) \frac{101}{408}$

Question Paper MathonGo

Q66. Let $(1+x+2x^2)^{20}=a_0+a_1x+a_2x^2+\ldots+a_{40}x^{40}$, then $a_1+a_3+a_5+\ldots+a_{37}$ is equal to

- $(3) \ 2^{19} (2^{20} + 21)$ mathongo w mathongo (4) $2^{20} (2^{20} + 21)$ w mathongo w mathongo

The solutions of the equation $\begin{vmatrix} 1+\sin^2 x & \sin^2 x & \sin^2 x \\ \cos^2 x & 1+\cos^2 x & \cos^2 x \end{vmatrix} = 0, (0 < x < \pi),$ are Q67. $4\sin 2x$ $4\sin 2x$ $1+4\sin 2x$

- /// mathongo (2) $\frac{\pi}{6}$, $\frac{5\pi}{6}$ hongo /// mathongo /// mathongo
- $(3) \frac{5\pi}{12}, \frac{7\pi}{12}$

Q68. The number of integral values of m so that the abscissa of point of intersection of lines 3x + 4y = 9 and y = mx + 1 is also an integer, is: (2) 2 mathongo /// mathongo

- (1) 1
- (3) 3(4) 0

mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo **Q69.** The equation of one of the straight lines which passes through the point (1,3) and makes an angles

- $\tan^{-1}\left(\sqrt{2}\right)$ with the straight line, $y+1=3\sqrt{2}x$ is (1) $4\sqrt{2}x+5y-\left(15+4\sqrt{2}\right)=0$ (2) $5\sqrt{2}x+4y-\left(15+4\sqrt{2}\right)=0$

- (3) $4\sqrt{2}x+5y-4\sqrt{2}=0$ (4) $4\sqrt{2}x-5y-\left(5+4\sqrt{2}\right)=0$ (5) muthongo

$$x^2 + y^2 - 10x - 10y + 41 = 0$$

$$x^2 + y^2 - 22x - 10y + 137 = 0$$

(1) circles have same centre

- (2) circles have no meeting point
- (3) circles have only one meeting point
- (4) circles have two meeting points

Q71. For the four circles M, N, O and P, following four equations are given:

- Circle $M: x^2 + y^2 = 1$ ongo /// mathongo /// mathongo /// mathongo /// mathongo
- Circle $N : x^2 + y^2 2x = 0$
- Circle $O: x^2 + y^2 2x 2y + 1 = 0$ athong /// mathong /// mathong ///
- Circle $P: x^2 + y^2 2y = 0$

If the centre of circle M is joined with centre of the circle N, further centre of circle N is joined with centre of the circle O, centre of circle O is joined with the centre of circle P and lastly, centre of circle P is joined with centre of circle M, then these lines form the sides of a

(1) Rhombus

(2) Square

(3) Rectangle

(4) Parallelogram

Q72. If $\lim_{x\to 0} \frac{\sin^{-1}x - \tan^{-1}x}{3x^3}$ is equal to L, then the value of (6L+1) is

- ///. mathongo ///. mathongo ///. mathongo ///. mathongo $(1) \frac{1}{6}$

(3)6

(4) 2

MathonGo

- Let $A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix}$ and $2A B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then $\operatorname{Tr}(A) - \operatorname{Tr}(B)$ has value equal to
 - (1) 1 (3) 0 (2) 2 (4) 3 (3) 0 (4) 1 (3) 0 (4) 1 (4) 3 (4) 3 (4) 1 (4) 3 (4) 1 (4)
- **Q74.** Let α, β, γ be the real roots of the equation, $x^3 + ax^2 + bx + c = 0$, $(a, b, c \in R)$ and $a, b \neq 0$). If the system of equations (in, u, v, w) given by $\alpha u + \beta v + \gamma w = 0$, $\beta u + \gamma v + \alpha w = 0$, $\gamma u + \alpha v + \beta w = 0$ has non-trivial solution, then the value of $\frac{a^2}{b}$ is _____ mathongo _____ mathongo _____ mathongo _____

 - (3) 1 mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- Q75. The real valued function $f(x) = \frac{\csc^{-1}x}{\sqrt{x-|x|}}$, where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to:
 - (2) all non-integers except the interval [-1,1](1) all reals except integers
 - mothongo (4) all reals except the Interval [-1,1] mothongo (3) all integers except 0, -1, 1
- Q76. If the functions are defined as $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$, then what is the common domain of the following functions: $f+g,\ f-g,\ f/g,\ g/f,\ g-f,$ where $(f\pm g)(x)=f(x)\pm g(x),$ $(f/g)(x)=rac{f(x)}{g(x)}$
 - ///. mathongo ///. mathongo (2) $0 \le x < 1$ go ///. mathongo ///. mathongo $(1) 0 \le x \le 1$
 - (3) 0 < x < 1
- Q77. If $f(x) = \begin{cases} \frac{1}{|x|} & ; |x| \ge 1 \\ ax^2 + b & ; |x| < 1 \end{cases}$ is differentiable at every point of the domain, then the values of a and b are respectively: respectively:
 - (1) $\frac{1}{2}$, $\frac{1}{2}$ (2) $\frac{1}{2}$, $-\frac{3}{2}$ (3) $\frac{5}{2}$, $-\frac{3}{2}$ (4) $-\frac{1}{2}$, $\frac{3}{2}$ nongo /// mathongo /// mathongo
- Q78. The integral $\int \frac{(2x-1)\cos\sqrt{(2x-1)^2+5}}{\sqrt{4x^2-4x+6}} dx$ is equal to (where c is a constant of integration) mathematical mathe
 - $(1) \frac{1}{2} \sin \sqrt{(2x-1)^2 + 5} + c$ $(3) \frac{1}{2} \cos \sqrt{(2x-1)^2 + 5} + c$ $(4) \frac{1}{2} \sin \sqrt{(2x+1)^2 + 5} + c$ $(2) \frac{1}{2} \cos \sqrt{(2x+1)^2 + 5} + c$ $(3) \frac{1}{2} \sin \sqrt{(2x+1)^2 + 5} + c$
- Q79. The differential equation satisfied by the system of parabolas $y^2 = 4a(x+a)$ is $(1) \ y \left(\frac{dy}{dx}\right)^2 2x \left(\frac{dy}{dx}\right) y = 0$ $(2) \ y \left(\frac{dy}{dx}\right)^2 2x \left(\frac{dy}{dx}\right) + y = 0$ $(3) \ y \left(\frac{dy}{dx}\right)^2 + 2x \left(\frac{dy}{dx}\right) y = 0$ $(4) \ y \left(\frac{dy}{dx}\right) + 2x \left(\frac{dy}{dx}\right) y = 0$
- **Q80.** A vector \vec{a} has components 3p and 1 with respect to a rectangular cartesian system. This system is rotated \vec{a} through a certain angle about the origin in the counter clockwise sense. If, with respect to new system, \overrightarrow{a} has components p + 1 and $\sqrt{10}$, then a value of p is equal to:
 - (1) 1
 - (4) -1 $(3) \frac{4}{5}$

- **Q81.** Let z_1, z_2 be the roots of the equation $z^2 + az + 12 = 0$ and z_1, z_2 form an equilateral triangle with origin. Then, the value of |a| is
- Q82. The number of times the digit 3 will be written when listing the integers from 1 to 1000 is
- **Q83.** The number of solutions of the equation $\left|\cot x\right| = \cot x + \frac{1}{\sin x}$ in the interval $[0, 2\pi]$ is
- **Q84.** A square ABCD has all its vertices on the curve $x^2y^2=1$. The midpoints of its sides also lie on the same curve. Then, the square of area of ABCD is
- Q85. The missing value in the following figure is mothongo mathongo mathongo mathongo

- Q86. The mean age of 25 teachers in a school is 40 years. A teacher retires at the age of 60 years and a new teacher is appointed in his place. If the mean age of the teachers in this school now is 39 years, then the age (in years) of the newly appointed teacher is
- **Q87.** If $f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx$, $(x \ge 0)$, f(0) = 0 and $f(1) = \frac{1}{K}$, then the value of K is
- **Q88.** Let f(x) and g(x) be two functions satisfying $f(x^2) + g(4-x) = 4x^3$ and g(4-x) + g(x) = 0, then the value of $\int_{-4}^4 f(x^2) dx$ is a mathon of $\int_{-4}^4 f(x^2) dx$ is a mathon of $\int_{-4}^4 f(x^2) dx$.
- **Q89.** Let the plane ax + by + cz + d = 0 bisect the line joining the points (4, -3, 1) and (2, 3, -5) at the right angles. If a, b, c, d are integers, then the minimum value of $(a^2 + b^2 + c^2 + d^2)$ is
- **Q90.** The equation of the planes parallel to the plane x 2y + 2z 3 = 0 which are at unit distance from the point (1, 2, 3) is ax + by + cz + d = 0. If (b d) = K(c a), then the positive value of K is

JEE Main 2021	(18 Mar	Shift 1)
Question Paper		

ANSWER KE	YS	ne menge	77.	mannengo	77.		g0 71.	and and go	/7.	me me ngo
1. (2) _{nathon} 2. (2	2)//. n	3. (2)		4. (3) _{nongo}	5. (2)	mathon	6. (1) ///	ma7.(1)go		8. (1) hongo
9. (4) 10.	(1)	11. (1)		12. (1)	13. (3	3)	14. (2)	15. (2)		16. (2)
17. (4) athon 18.	(2)	19. (3)		20. (1) ongo	21. (5)nathon	22. (10)	23. (10)		24. (20)
25. (32) 26.	(6)	27. (161)		28. (2)	29. (70)	30. (100)	31. (2)		32. (2)
33. (4) 34.	(3)	35. (4)		36. (4)	37. (1)	38. (2)	39. (1)		40. (3)
41. (1) 42.	(2)	43. (4)		44. (3)	45. (2	2) nathon	46. (3)	47. (2)		48. (3)
49. (1) 50.	(4)	51. (16)		52. (18)	53. (15)	54. (128)	55. (10)		56. (50)
57. (45) thon 58.	(3)/ n	59. (3)		60. (3) ongo	,		62. (2)//	mo 63. (1) o		64. (2) ongo
65. (2) 66.	/// n	67. (4)		68. (2)	69. (mathan	70. (3)	71. (2)		72. (4)
73. (2) 74.	` '	75. (2)		76. (3)	77. (4		78. (1)	79. (3)		80. (4)
//// mathongo	(300)	83. (1)		84. (80)	85. (4	4) mathon	86. (35)	87. (4)		88. (512)
89. (28) 90.										