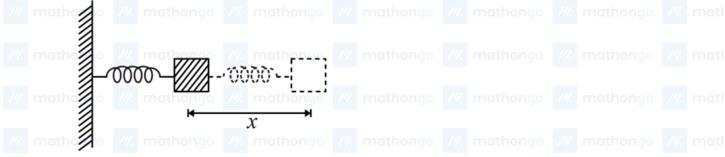
Question Paper

Q1. What will be the projection of vector $\overrightarrow{A} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ on vector $\overrightarrow{B} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$?

- $(1) \sqrt{2} (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ $(3) \sqrt{2} (\hat{\mathbf{i}} + \hat{\mathbf{j}})$ $(4) (\hat{\mathbf{i}} + \hat{\mathbf{j}})$ $(4) (\hat{\mathbf{i}} + \hat{\mathbf{j}})$ $(5) 2 (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ $(6) (2) 2 (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ $(7) 2 (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ $(8) (2) 2 (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ $(9) (2) 2 (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$

Q2. A bullet of 4 g mass is fired from a gun of mass 4 kg. If the bullet moves with the muzzle speed of 50 ms¹, the impulse imparted to the gun and velocity of recoil of gun are


(1) $0.4 \text{ kg m s}^{-1}, 0.1 \text{ m s}^{-1}$

(2) 0.2 kg m s^{-1} , 0.05 m s^{-1} mathongo /// math

 $(3) 0.2 \text{ kg m s}^{-1}, 0.1 \text{ m s}^{-1}$

 $(4) 0.4 \text{ kg m s}^{-1}, 0.05 \text{ m s}^{-1}$

Q3. The motion of a mass on a spring, with spring constant K is as shown in figure.

The equation of motion is given by, $x(t) = A \sin \omega t + B \cos \omega t$ with $\omega = \sqrt{\frac{K}{m}}$.

Suppose that at time t = 0, the position of mass is x(0) and velocity v(0), then its displacement can also be represented as $x(t) = C\cos(\omega t - \phi)$, where C and ϕ are

$$(1) \ C = \sqrt{rac{2 ext{v}(0)^2}{\omega^2} + x(0)^2}, \ \phi = an^{-1} \Big(rac{v(0)}{x(0)\omega}\Big)$$

$$(1) C = \sqrt{\frac{2v(0)^2}{\omega^2} + x(0)^2}, \ \phi = \tan^{-1}\left(\frac{v(0)}{x(0)\omega}\right)$$

$$(2) C = \sqrt{\frac{2v(0)^2}{\omega^2} + x(0)^2}, \ \phi = \tan^{-1}\left(\frac{x(0)\omega}{2v(0)}\right)$$

$$(3) C = \sqrt{\frac{v(0)^2}{\omega^2} + x(0)^2}, \ \phi = \tan^{-1}\left(\frac{x(0)\omega}{v(0)}\right)$$

$$(4) C = \sqrt{\frac{v(0)^2}{\omega^2} + x(0)^2}, \ \phi = \tan^{-1}\left(\frac{v(0)}{x(0)\omega}\right)$$

$$C=\sqrt{rac{\mathrm{v}(0)^2}{\omega^2}+x\Big(0\Big)^2},\ \phi= an^{-1}\Big(rac{x(0)\omega}{v(0)}\Big)$$

$$^{(4)}$$
 $C = \sqrt{rac{{
m v}(0)^2}{\omega^2} + x \Big(0\Big)^2}, \; \phi = an^{-1} \Big(rac{v(0)}{x(0)\omega}\Big)$

Q4. A porter lifts a heavy suitcase of mass 80 kg and at the destination lowers it down by a distance of 80 cm with must a constant velocity. Calculate the work done by the porter in lowering the suitcase. (take $g = 9.8 \text{ ms}^{-2}$)

(1) -62720.0 J

(2) -627.2 J

(3) +627.2 J

(4) 784.0 J

Q5. Consider a situation in which a ring, a solid cylinder and a solid sphere roll down on the same inclined plane without slipping. Assume that they start rolling from rest and having identical diameter. The correct statement for this situation is

- (1) The sphere has the greatest and the ring has the least velocity of the centre of mass at the bottom mathor of the inclined plane.
- (2) The ring has the greatest and the cylinder has the least velocity of the centre of mass at the bottom of the inclined plane.
- (3) All of them will have same velocity.
- (4) The cylinder has the greatest and the sphere has the least velocity of the centre of mass at the bottom of the inclined plane.

Q6. A body is projected vertically upwards from the surface of earth with a velocity sufficient enough to carry it to infinity. The time taken by it to reach height h is _____ S.

 $(1) \sqrt{\frac{R_e}{2\,\mathrm{g}}} \left[\left(1 + \frac{h}{R_e}\right)^{\frac{3}{2}} - 1 \right]$

 $(2) \sqrt{\frac{2R_e}{q}} \left[\left(1 + \frac{h}{R_e} \right)^{\frac{3}{2}} - 1 \right]$

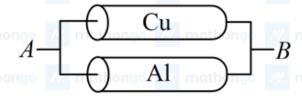
(3) $\frac{1}{3}\sqrt{\frac{R_e}{2\,\mathrm{g}}} \left[\left(1 + \frac{h}{R_c}\right)^{\frac{3}{2}} - 1 \right]$

 $^{(4)} \frac{1}{3} \sqrt{\frac{2R_c}{g}} \left[\left(1 + \frac{h}{R_e} \right)^{\frac{3}{2}} - 1 \right]$

Question Paper

07 W/ 4	ill be the average va	1 C	- · · C- · · · · · · · · · · ·	محارف وحجارة ومحموها	41 1		t T2
U. What wi	III be ine average va	ille of energ	v ior a mond	naiomic gas in	inermai e	edullibrilim al	lemperallire I
VIII III	in or the average va	inde of emerg	j ioi a mone	atomic Sas in	tiioiiiiai o	quiliorium at	temperature 1 .

 $(1) \frac{2}{3} k_B T$


(2) k_BT

 $(3) \frac{3}{2} k_B T$

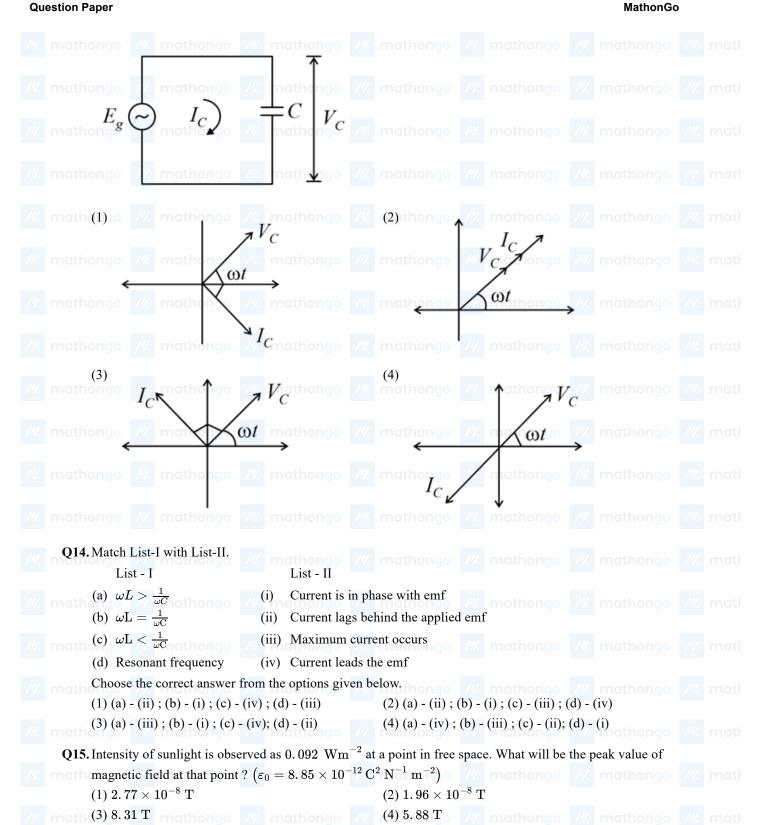
- $(4) \frac{1}{2} k_B T$
- **Q8.** T_0 is the time period of a simple pendulum at a place. If the length of the pendulum is reduced to $\frac{1}{16}$ times of its initial value, the modified time period is
 - (1) T_0

- math (3) $4T_0$ /// mathongo /// mathongo /// (4) $\frac{1}{4}T_0$ ngo /// mathongo /// mathongo /// mathongo ///
- **Q9.** An electric dipole is placed on x-axis in proximity to a line charge of linear charge density 3.0×10^{-6} C m⁻¹. Line charge is placed on z-axis and positive and negative charge of dipole is at a distance of 10 mm and 12 mm from the origin respectively. If total force of 4 N is exerted on the dipole, find out the amount of positive or negative charge of the dipole.
 - (1) 815.1 nC
- mathongo (2) $8.8 \,\mu\text{C}$ (4) $4.44 \,\mu\text{C}$ mathongo /// mathongo ///
- (3) 0.485 mC

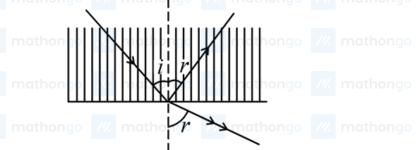
- Q10. A Copper (Cu) rod of length 25 cm and cross-sectional area 3 mm² is joined with a similar Aluminium (Al) rod as shown in figure. Find the resistance of the combination between the ends A and B. (Take resistivity of Copper = $1.7 \times 10^{-8} \Omega m$, Resistivity of aluminium = $2.6 \times 10^{-8} \Omega m$)

 $(1) 2.170 \,\mathrm{m}\Omega$

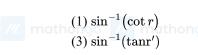
(2) $1.420 \,\mathrm{m}\Omega$ // mathongo // mathongo //


(3) $0.0858 \text{ m}\Omega$

- (4) $0.858 \,\mathrm{m}\Omega$
- Q11. Statement I: The ferromagnetic property depends on temperature. At high temperature, ferromagnet becomes paramagnet.


Statement II: At high temperature, the domain wall area of a ferromagnetic substance increases. In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Both Statement I and Statement II are true.
- (3) Both Statement I and Statement II are false.
- (4) Statement I is false but Statement II is true.


- Q12. Choose the correct option.
 - (1) True dip is not mathematically related to apparent(2) True dip is less than apparent dip.
 - (3) True dip is always greater than the apparent dip. (4) True dip is always equal to apparent dip.
- Q13. In a circuit consisting of a capacitance and a generator with alternating emf, $E_q = E_{qo} sin\omega t$, V_C and I_C are moth the voltage and current. Correct phasor diagram for such circuit is

(1)
$$\sin^{-1}(\cot r)$$
 (2) $\tan^{-1}(\sin i)$ (4) $\sin^{-1}(\tan r)$

Q17. An electron of mass m_e and a proton of mass m_P are accelerated through the same potential difference. The ratio of the de-Broglie wavelength associated with the electron to that with the proton is

$$(1) \frac{m_P}{m_e}$$

$$(3) \sqrt{\frac{m_p}{m_e}}$$

(4)
$$\frac{m_e}{m_p}$$

Q18. A nucleus with mass number 184 initially at rest emits an α -particle. If the Q value of the reaction is 5.5 MeV, calculate the kinetic energy of the α - particle.

$$(1) 5.0 \text{ MeV}$$

$$(4) 5.38 \text{ MeV}$$

Q19. Consider a situation in which reverse biased current of a particular P - N junction increases when it is exposed to a light of wavelength < 621 nm. During this process, enhancement in carrier concentration takes place due to generation of hole-electron pairs. The value of band gap is nearly.

$$(2) 4 \text{ eV}$$

$$(3) 1 \text{ eV}$$

Q20. What should be the height of transmitting antenna and the population covered if the television telecast is to cover a radius of 150 km? The average population density around the tower is 2000 km⁻² and the value of

math
$$R_{
m e}=6.5 imes10^6$$
 m.ongo $\,$ ///. mathongo $\,$ ///. mathongo $\,$ ///. mathongo $\,$ ///.

(2) Height
$$= 1241 \text{ m}$$

(1) Height = 1731 m

Population Covered =
$$1413 \times 10^5$$

Population Covered =
$$1413 \times 10^5$$
 Population Covered = 7×10^5 When the p

$$(3)$$
 Height $= 1600 \text{ m}$

Population Covered
$$= 2 \times 10^5$$

(4) Height =
$$1800 \text{ m}$$

Population Covered =
$$1413 \times 10^8$$

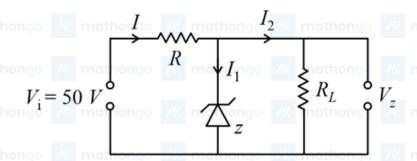
- **Q21.** Three particles P, Q and R are moving along the vectors $\overrightarrow{A} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$, $\overrightarrow{B} = \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\overrightarrow{C} = -\hat{\mathbf{i}} + \hat{\mathbf{j}}$, respectively. They strike on a point and start to move in different directions. Now particle P is moving normal to the plane which contains vector \overrightarrow{A} and \overrightarrow{B} . Similarly particle Q is moving normal to the plane which contains vector \overrightarrow{A} and \overrightarrow{C} . The angle between the direction of motion of P and Q is $\cos^{-1}\left(\frac{1}{\sqrt{x}}\right)$. Then the value of x is _____.
- Q22. Three students S_1 , S_2 and S_3 perform an experiment for determining the acceleration due to gravity (g) using a simple pendulum. They use different lengths of pendulum and record time for different number of oscillations. The observations are as shown in the table.

Student No. Length of pendulum Number of oscillations Total time for Time

- (cm)
- (n)

n oscillations period

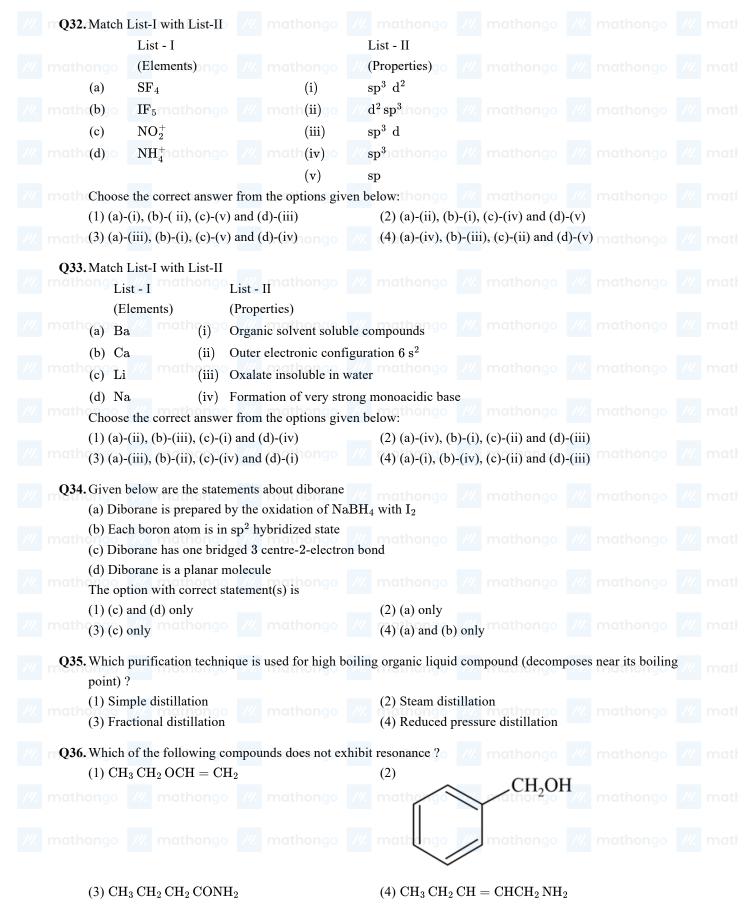
JEE Main 2021 (22 Jul Shift 1) Question Paper


JEE Main Previous Year Paper MathonGo

				$mo(\mathbf{s})$ on go	
1.	64.0	8	128.0	16.0	
ithchao	// 64 0 0 0 0	// mothongo	/// months 64 0 ///	mc16 0000	

Math (Least count of length = 0.1 m, least count for time = 0.1 s) mathon (Least count of length = 0.1 m, least count for time = 0.1 s) mathon (Least count of length = 0.1 m) mathon (Least count of length = $0.1 \text{$

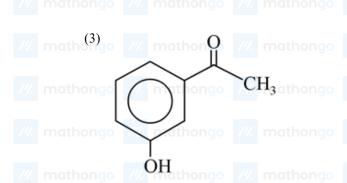
If E_1 , E_2 and E_3 are the percentage errors in g for students 1, 2 and 3, respectively, then the minimum percentage error is obtained by student no g mathons g mathons g mathons g mathons g


- Q23. The position of the centre of mass of a uniform semi-circular wire of radius R placed in x-y plane with its centre at the origin and the line joining its ends as x-axis is given by, $\left(0, \frac{xR}{\pi}\right)$. Then, the value of |x| is _____.
- **Q24.** The centre of a wheel rolling on a plane surface moves with a speed v_0 . A particle on the rim of the wheel at the same level as the centre will be moving at a speed $\sqrt{x}v_0$. Then the value of x is _____.
- Q25. The area of cross-section of a railway track is 0.01 m^2 . The temperature variation is $10 \,^{\circ}$ C. Coefficient of linear expansion of material of track is $10^{-5} \,^{\circ}$ C⁻¹. The energy stored per meter in the track is $J \,^{m-1}$. (Young's modulus of material of track is $10^{11} \,^{N} \,^{m-2}$)
- Q26. In 5 minutes, a body cools from 75 °C to 65 °C at room temperature of 25 °C. The temperature of body at the end of next 5 minutes is ____ °C.
- Q27. The total charge enclosed in an incremental volume of 2×10^{-9} m³ located at the origin is _____ nC, if electric flux density of its field is found as $D = e^{-x} \sin y \hat{\mathbf{i}} e^{-x} \cos y \hat{\mathbf{j}} + 2z \hat{\mathbf{k}} \ \mathrm{C} \ \mathrm{m}^{-2}$
- Q28. In an electric circuit, a call of certain emf provides a potential difference of 1.25 V across a load resistance of 5 Ω . However, it provides a potential difference of 1 V across a load resistance of 2 Ω . The emf of the cell is given by $\frac{x}{10}$ V. Then the value of x is _______.
- Q29. A ray of light passing through a prism $(\mu = \sqrt{3})$ suffers minimum deviation. It is found that the angle of incidence is double the angle of refraction within the prism. Then, the angle of prism is (in degrees).

- Q31. Which one of the following statements for D.I. Mendeleeff, is incorrect? mathongo /// mathongo
 - (1) He authored the textbook Principles of Chemistry.
- (2) At the time, he proposed Periodic Table of elements structure of atom was known.
- (3) Element with atomic number 101 is named after (4) He invented accurate barometer. him.

JEE Main 2021 (22 Jul Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo


Q37. Which of the following molecules does not show stereo isomerism?

followed by hydrolysis?

/// math(1) 3, 4-Dimethylhex-3-ene // mathongo // (3) 3-Ethylhex-3-ene	(2) 3-Methylhex-1-ene thongo // mathongo // math (4) 4-Methylhex-1-ene
W. mathongo W. mat	
	B, Anhyd. 90 Mather CH ₂ CH ₃ mathongo Mather Mather AlCl ₃
/// mathor /// hathong 20 /// mathong 7	mathongo mathongo mathongo math
/// mathongo /// mathongo /// Major product	// mathongo ///
In the chemical reactions given above A and B re (1) H_3 PO_2 and CH_3 CH_2 Cl	spectively are : (2) CH ₃ CH ₂ OH and H ₃ PO ₂
(3) H ₃ PO ₂ and CH ₃ CH ₂ OH mathongo mathongo mathongo	(4) CH ₃ CH ₂ Cl and H ₃ PO ₂ mathons a mathon a m
Q39. The water having more dissolved O_2 is :	
(1) boiling water (3) polluted water	(2) water at 80°C mathongo // mathongo // mathongo //
Q40. Which one of the following 0.06 M aqueous solu	tions has lowest freezing point?
	tions has to west freezing point.
$(1) \text{ Al}_2 (SO_4)_3$ /// math(3) KI // mathonge // mathonge //	(2) $C_6H_{12}O_6$ (4) K_2SO_4 // mathongo // mathongo // mathongo
Q41. Isotope(s) of hydrogen which emits low energy β	// marhanda /// marhanda /// marhanda /// mark
(1) Protium	(2) Tritium
(3) Deuterium /// mathongo // mathongo //	(4) Deuterium and Tritium // mathongo // mathongo // mathongo // mathongo //
Q42. When silver nitrate solution is added to potassium	
$\begin{array}{c c} & \text{math (1) AgI/I}^- & \text{mathongo} \\ \hline & \text{(3) KI/NO}_3^- \\ \end{array} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Q43. Sulphide ion is soft base and its ores are common (a) Pb (b) Al (c) Ag (d) Mg	for metals ingo /// mathongo /// mathongo /// math
Choose the correct answer from the options given	below thongo /// mathongo /// mathongo /// math
(1) a and c only	(2) a and d only
/// moth (3) a and b only thongo // mothongo //	(4) c and d only mathongo // mathongo // math
Q44. Which one of the following group-15 hydride is the	he strongest reducing agent ?
/// math (1) AsH ₃ mathongo // mathongo //	(2) BiH ₃ go // mathongo // mathongo // math
$(3) \mathrm{PH}_3$	$(4) SbH_3$
Q45. The set having ions which are coloured and paran	=
(1) $\mathrm{Cu^{2+}},\ \mathrm{Cr^{3+}},\ \mathrm{Sc^{+}}$ (3) $\mathrm{Sc^{3+}},\ \mathrm{V^{5+}},\ \mathrm{Ti^{4+}}$	(2) Cu^{2+} , Zn^{2+} , Mn^{4+} (4) Ni^{2+} , Mn^{7+} , Hg^{2+}
Q46. Which of the following compounds will provide a	a tertiary alcohol on reaction with excess of CH ₃ MgBr /// mat

JEE Main 2021 (22 Jul Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

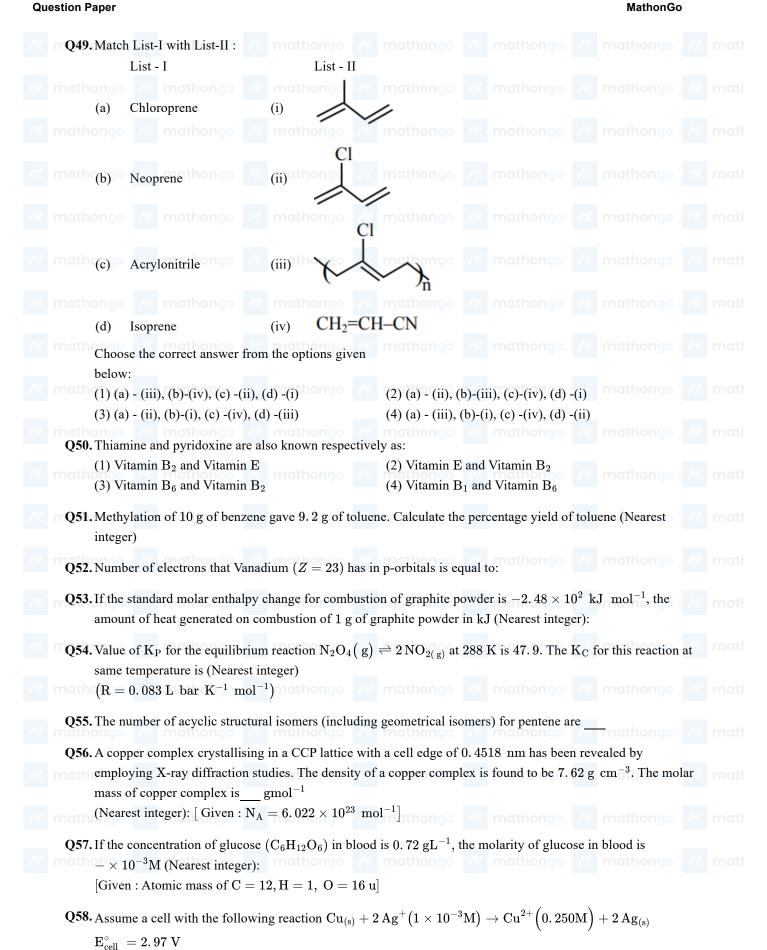
Q47. An organic compound A(C₆H₆O) gives dark green colouration with ferric chloride. On treatment with CHCl₃ and KOH, followed by acidification gives compound B. Compound B can also be obtained from compound C on reaction with pyridinium chlorochromate (PCC). Identify A, B and C.

(1)
$$A = \bigcirc$$
 OH

$$C = \bigcirc A = \bigcirc$$

(3)
$$CH_2OH$$
 OH CHO

$$C = \bigcirc A = \bigcirc CHO$$


$$CH_2OH$$
 CHO
 $C=$

Q48. Which one of the following reactions does not occur? athono // mathono // mathono

(1)
$$NH_2$$
 $NHCOCH$

though $+(CH_3CO)_2O/Pyridine \rightarrow O$

$$(4) \qquad NH_2 \qquad NH_2 \qquad NH_2 \qquad NH_2 \qquad NH_2 \qquad NH_2 \qquad NO_2$$

 $(3) \frac{3}{2}$

Question Paper

math ${
m E}_{
m cell}$ for the above reaction is __m V.hongo /// mathongo /// mathongo /// mathongo /// (Nearest integer)

 $_{
m math}$ [Given : $\log 2.5 = 0.3979, \; \mathrm{T} = 298 \; \mathrm{K}$] $_{
m math}$ $_{
m math}$

Q59. $\mathrm{N_2O_{5(\,\mathrm{g})}} \rightarrow 2\,\mathrm{NO_{2(\,\mathrm{g})}} + \frac{1}{2}\,\mathrm{O_{2(\,\mathrm{g})}}$

In the above first order reaction the initial concentration of N_2O_5 is $2.40\times 10^{-2}~\text{mol}~L^{-1}$ at 318 K. The concentration of N_2O_5 after 1 hour was 1.60×10^{-2} mol L⁻¹. The rate constant of the reaction at 318 K is $10^{-3} \, \mathrm{min^{-1}}$ (Nearest integer): though /// mathongo /// mathongo /// mathongo /// mathongo

[Given : $\log 3 = 0.477, \log 5 = 0.699$]

Q60. The total number of unpaired electrons present in $[Co(NH_3)_6]Cl_2$ and $[Co(NH_3)_6]Cl_3$ is

Q61. Let n denote the number of solutions of the equation $z^2 + 3\overline{z} = 0$, where z is a complex number. Then the value of $\sum_{k=0}^{\infty} \frac{1}{n^k}$ is equal to

mathongo ///. math(1) 1

Q62. Let S_n denote the sum of first n-terms of an arithmetic progression. If $S_{10}=530,\ S_5=140,$ then $S_{20}-S_6$ is

equal to: mathongo /// mathongo /// (2) 1842 go /// mathongo /// mathongo /// mathongo (1) 1862

(4) 1872 (3) 1852

Q63. The number of solutions of $\sin^7 x + \cos^7 x = 1, \ x \in \left[0, \ 4\pi\right]$ is equal to

// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// (3) 5

Q64. Let the circle $S: 36x^2 + 36y^2 - 108x + 120y + C = 0$ be such that it neither intersects nor touches the co-

ordinate axes. If the point of intersection of the lines, x - 2y = 4 and 2x - y = 5 lies inside the circle S, then:

 $(1) \frac{25}{9} < C < \frac{13}{3}$ mothong (2) 100 < C < 165 mathong (3) 81 < C < 156 (4) 100 < C < 156

Q65. Let $E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b. Let E_2 be another ellipse such that it touches the end points of major axis of E_1 and the foci of E_2 are the end points of minor axis of E_1 . If E_1 and E_2 have same eccentricities, then its value

 $(1) \frac{-1+\sqrt{5}}{2}$ $math(3) \frac{-1+\sqrt{3}}{2}$ mathongo/// mathongo /// mathongo // mathongo

Q66. Let a line $L: 2x + y = k, \ k > 0$ be a tangent to the hyperbola $x^2 - y^2 = 3$. If L is also a tangent to the parabola $y^2 = \alpha x$, then α is equal to:

mathongo $\frac{(2)-12}{(4)-24}$ mathongo $\frac{(2)-12}{(4)-24}$ mathongo $\frac{(2)-12}{(4)-24}$

Q67. Which of the following Boolean expressions is not a tautology? _____ mathona ____ mathona

 $(2) (q \Rightarrow p) \lor (\neg q \Rightarrow p)$ $(1) (p \Rightarrow q) \lor (\neg q \Rightarrow p)$

(4) $({}^{\circ}p \Rightarrow q) \lor ({}^{\circ}q \Rightarrow p)$ mathongo ${}^{\circ}$ math $(3) (p \Rightarrow \neg q) \lor (\neg q \Rightarrow p)$

Q68. Let $A = [a_{ij}]$ be a real matrix of order 3×3 , such that $a_{i1} + a_{i2} + a_{i3} = 1$, for i = 1, 2, 3. Then, the sum of

all the entries of the matrix A^3 is equal to: (1) 2(2) 1

(3) 3(4)9 **Question Paper**

MathonGo

Q69. The values of λ and μ such that the system of equations $x+y+z=6,\ 3x+5y+5z=26$ and the result of λ $x + 2y + \lambda z = \mu$ has no solution, are:

- math (1) $\lambda=3, \mu=5$ thongo /// mathongo /// (2) $\lambda=3, \mu\neq 10$ mathongo /// mathongo /// mathongo
 - (3) $\lambda \neq 2, \mu = 10$

Q70. Let [x] denote the greatest integer less than or equal to x. Then, the values of $x \in R$ satisfying the equation $[e^x]^2 + [e^x + 1] - 3 = 0$ lie in the interval:

- $\operatorname{math}_{(1)}\left[0,\frac{1}{a}\right]$ mathongo // mathongo // (2) $\left[\log_{e}2,\log_{e}3\right]$ mathongo // mathongo // mathongo
 - (3) [1, e)

Q71. If the domain of the function $f(x) = \frac{\cos^{-1}\sqrt{x^2-x+1}}{\sqrt{\sin^{-1}(\frac{2x-1}{2})}}$ is the interval $(\alpha, \beta]$, then $\alpha + \beta$ is equal to: (2) 2 nongo /// mathongo /// mathongo /// mat

 $math_{(1)} \frac{3}{2}$ /// mathongo

 $(3) \frac{1}{2}$

Let $f:R \to R$ be defined as $f(x) = \begin{cases} \frac{x^3}{(1-\cos 2x)^2}\log_e\left(\frac{1+2xe^{-2x}}{(1-xe^{-x})^2}\right) & , \ x \neq 0 \end{cases}$

If f is continuous at x = 0, then α is equal to:

- /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Q73. Let $f:R \to R$ be defined as $f(x) = \begin{cases} -\frac{4}{3}x^3 + 2x^2 + 3x, & x>0 \\ 3xe^x, & x \leq 0 \end{cases}$. Then f is increasing function in the mathanterval //. mathongo //. mathongo //. mathongo //. mathongo //. mathongo //. mathongo

 $(1) \left(-\frac{1}{2}, 2\right)$

(2)(0, 2)

- math (3) $\left(-1, \frac{3}{2}\right)$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Q74. If $\int_0^{100\pi} \frac{\sin^2 x}{e^{\left(\frac{x}{\pi} - \left[\frac{x}{\pi}\right]\right)}} dx = \frac{\alpha \pi^3}{1 + 4\pi^2}$, $\alpha \in R$ where [x] is the greatest integer less than or equal to x, then the value of mathons in the property of the

- $(1) \ 200 (1-e^{-1})$ mathons $(2) \ 100 (1-e)$ mathons $(3) \ 50 (e-1)$ $(4) \ 150 (e^{-1}-1)$

Q75. Let y = y(x) be the solution of the differential equation $\csc^2 x dy + 2 dx = (1 + y \cos 2x) \csc^2 x dx$, with $y(\frac{\pi}{4}) = 0$. Then, the value of $(y(0) + 1)^2$ is equal to: math(1) $e^{1/2}$ /// mathongo /// mathongo

Q76. Let a vector \overrightarrow{a} be coplanar with vectors $\overrightarrow{b} = 2\hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} - \hat{j} + \hat{k}$. If \overrightarrow{a} is perpendicular to

 $\vec{d} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, and $|\vec{a}| = \sqrt{10}$. Then a possible value of $[\vec{a} \ \vec{b} \ \vec{c}] + [\vec{a} \ \vec{b} \ \vec{d}] + [\vec{a} \ \vec{c} \ \vec{d}]$ is equal to:

(1) -42

- math(3) -29 /// mathongo // mathongo /// mathongo // mathongo

Q77. Let three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$, $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ and $|\overrightarrow{a}| = 2$. Then which one of the following is not true?

- $(1)\overrightarrow{a} \times \left(\left(\overrightarrow{b} + \overrightarrow{c} \right) \times \left(\overrightarrow{b} \overrightarrow{c} \right) \right) = \overrightarrow{0}$
- (2) Projection of \overrightarrow{a} on $(\overrightarrow{b} \times \overrightarrow{c})$ is 2

 $(3) \left[\overrightarrow{a} \xrightarrow{b} \overrightarrow{c} \right] + \left[\overrightarrow{c} \xrightarrow{a} \overrightarrow{b} \right] = 8$

 $(4) \left| \overrightarrow{3a} + \overrightarrow{b} - 2\overrightarrow{c} \right|^2 = 51$

MathonGo

Q78. Let L be the line of intersection of planes $\overrightarrow{r} \cdot \left(\hat{i} - \hat{j} + 2\widehat{k}\right) = 2$ and $\overrightarrow{r} \cdot \left(2\hat{i} + \hat{j} - \widehat{k}\right) = 2$. If $P(\alpha, \beta, \gamma)$ is the foot of perpendicular on L from the point (1, 2, 0), then the value of $35(\alpha + \beta + \gamma)$ is equal to:

(1) 101

Question Paper

- // mathongo /// mathongo /// (2) 119 ngo
- (3) 143

(4) 134

Q79. If the shortest distance between the straight lines 3(x-1) = 6(y-2) = 2(z-1) and

 $4(x-2)=2(y-\lambda)=(z-3),\ \lambda\in R$ is $\frac{1}{\sqrt{38}}$, then the integral value of λ is equal to:

(1) 3

(3) 5

Q80. Four dice are thrown simultaneously and the numbers shown on these dice are recorded in 2×2 matrices. The most probability that such formed matrices have all different entries and are non-singular, is:

 $(1) \frac{45}{162}$

 $(3) \frac{22}{81}$

(4) 43/162 ngo /// mathongo /// mathongo /// mathongo

Q81. If the digits are not allowed to repeat in any number formed by using the digits 0, 2, 4, 6, 8, then the number of all numbers greater than 10,000 is equal to _____ mothongo ____ mothongo

Q82. The sum of all the elements in the set $\{n \in \{1, 2, \dots, 100\} \mid \text{H.C.F. of } n \text{ and } 2040 \text{ is } 1\}$ is equal to

Q83. If the constant term, in binomial expansion of $(2x^r + \frac{1}{x^2})^{10}$ is 180, then r is equal to ______

Q84. The number of elements in the set $\{n \in \{1, 2, 3, \dots, 100\} \mid (11)^n > (10)^n + (9)^n\}$ is _____.

Q85. Consider the following frequency distribution:

moth Class:

- 6-12 tho 12-18 m 18-24 24 -30 honge // mathonge //

Frequency:

moth If mean $=\frac{309}{22}$ and median =14, then the value $(a-b)^2$ is equal to /// mothongo /// mothongo

Q86. Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then the number of 3×3 matrices B with entries from the set $\{1, 2, 3, 4, 5\}$ and

math satisfying AB = BA is _______nathongo_____ mathongo____ mathongo_____ mathongo_____

Q87. Let $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Then the number of bijective functions $f: A \to A$ such that f(1) + f(2) = 3 - f(3) is equal to

Q88. Let f:R o R be a function defined as $f(x)=egin{cases} 3\Big(1-rac{|x|}{2}\Big) & ext{if} & |x|\leq 2 \\ 0 & ext{if} & |x|>2 \end{cases}$

much Let $g: R \to R$ be given by g(x) = f(x+2) - f(x-2). If n and m denote the number of points in R where g is not continuous and not differentiable, respectively, then n + m is equal to

Q89. The area (in sq. units) of the region bounded by the curves $x^2 + 2y - 1 = 0$, $y^2 + 4x - 4 = 0$ and The area (in sq. ain.e.) $y^2 - 4x - 4 = 0$ in the upper half plane is _____. $y^2 - 4x - 4 = 0$ in the upper half plane is _____. mathongo /// mathongo /// mathongo ///

Q90. Let y = y(x) be the solution of the differential equation

 $\left((x+2)e^{\left(rac{y+1}{x+2}
ight)}+(y+1)
ight)dx=(x+2)dy,\ y(1)=1.$ If the domain of y=y(x) is an open interval $(lpha,\ eta),$ then $|\alpha + \beta|$ is equal to ____

ANSWER	KEYS	martinon go	///.	munimungo	/%. paratisas	(go /	// go	///.	ge ge
1. (4) _{nathor}		3. (4)	///.	4. (2)	5. (1) mathor	6. (4)	7. (3)	111.	8. (4) hongo
9. (4)	10. (4)	11. (1)		12. (2)	13. (3)	14. (1)	15. (1)		16. (4)
17. (3) athor	18. (4)	mat 19. (1)		20. (1) ongo	21. (3) athor	22. (1)	23. (2)		24. (2) ongo
25. (5)	26. (57)	27. (4)		28. (15)	29. (60)	30. (50)	31. (2)		32. (3)
33. (1)	34. (2)	35. (4)		36. (4)	37. (3)	38. (1)	39. (4)		40. (1)
41. (2)	42. (1)	43. (1)		44. (2)	45. (1)	46. (1)	47. (1)		48. (3)
49. (2)	50. (4)	51. (78)		52. (12)	53. (21)	54. (2)	55. (6)		56. (106)
57. (4) athor	58. (3)	mat 59. (7)		60. (1)ongo	61. (2) athor	62. (1)	63. (3)		64. (4) ongo
65. (1)	66. (4)	67. (4)		68. (3)	69. (4)	70. (4)	71. (1)		72. (1)
73. (3)	74. (1)	75. (3)		76. (1)	77. (4)	78. (2)	79. (1)		80. (4)
81. (96)	82. (125)	1) 83. (8)		84. (96)	85. (4)	86. (31)	87. (720)		88. (4)
89. (2)	90. (4)								