Question Paper #### JEE Main Previous Year Paper MathonGo Q1. A wire of 1 Ω has a length of 1 m. It is stretched till its length increases by 25%. The percentage change in resistance to the nearest integer is: - (1) 12.5% - / mathongo /// mathongo (2) 76% athongo /// mathongo /// mathongo - (3) 25% (4) 56% **Q2.** If C and V represent capacity and voltage respectively then what are the dimensions of λ where $C/V=\lambda$? Q3. A scooter accelerates from rest for time t_1 at constant rate a_1 and then retards at constant rate a_2 for time t_2 and comes to rest. The correct value of $\frac{t_1}{t_2}$ will be : - (1) $\frac{a_2}{a_1}$ mathongo mathongo (2) $\frac{a_1}{a_2}$ mathongo (3) $\frac{a_1+a_2}{a_1}$ (4) $\frac{a_1+a_2}{a_2}$ **Q4.** The trajectory of a projectile in a vertical plane is $y = \alpha x - \beta x^2$, where α and β are constants and x & y are respectively the horizontal and vertical distances of the projectile from the point of projection. The angle of projection θ and the maximum height attained H are respectively given by M mathons - (1) $\tan^{-1} \alpha$, $\frac{4\alpha^2}{\beta}$ (2) $\tan^{-1} \left(\frac{\beta}{\alpha}\right)$, $\frac{\alpha^2}{\beta}$ (3) $\tan^{-1} \beta$, $\frac{\alpha^2}{2\beta}$ mathons (4) $\tan^{-1} \alpha$, $\frac{\alpha^2}{4\beta}$ mathons (7) mathons Q5. An inclined plane making an angle of 30° with the horizontal is placed in a uniform horizontal electric field $200\frac{N}{C}$ as shown in the figure. A body of mass 1 kg and charge 5 mC is allowed to slide down from rest at a height of 1 m. If the coefficient of friction is 0.2, find the time taken by the body to reach the bottom. $\left|g = 9.8 \mathrm{\ m\ s^{-2}}; \; \sin 30 \, angle = rac{1}{2}; \; \cos 30 \, angle = rac{\sqrt{3}}{2}$ 🔭 athongo ///. mathongo ///. mathongo 1 m nathongo ///. mathongo ///. mathongo ///. mathongo (1) 0.92 s (2) 1.3 s - (3) 0.46 s - mathongo /// mathongo (4) 2.3 suthongo /// mathongo /// mathongo **Q6.** Two masses A and B, each of mass M are fixed together by a massless spring, A force acts on the mass B as shown in figure. If the mass A starts moving away from mass B with acceleration a, then the acceleration of mass B will be: mathongo ///. mathongo ///. mathongo - (1) $\frac{MF}{F+Ma}$ /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// (2) $\frac{F+Ma}{M}$ hongo /// mathongo mathong Q7. A cord is wound round the circumference of wheel of radius r, The axis of the wheel is horizontal and the moment of inertia about it is I. A weight mg is attached to the cord at the end. The weight falls from rest. After falling through a distance h, the square of angular velocity of wheel will be - (1) $\frac{2mgh}{I+mr^2}$ (2) $\frac{2mgh}{I+2mr^2}$ (3) 2gh (4) $\frac{2gh}{I+mr^2}$ **Q8.** The length of metallic wire is l_1 when tension in it is T_1 . It is l_2 when the tension is T_2 . The original length of the wire will be: **Q9.** The internal energy (U), pressure (P) and volume (V) of an ideal gas are related as U=3PV+4. The gas is - (1) either monoatomic or diatomic - (2) polyatomic only (3) monoatomic only (4) diatomic only Q10. Given below are two statements: Statement I: A second's pendulum has a time period of 1 second. Once // mothonge // mothonge Statement II: It takes precisely one second to move between the two extreme positions. In the light of the above statements, choose the correct answer from the options given below - (1) Statement I is false but Statement II is true - (2) Both Statement I and Statement II are true - (3) Both Statement I and Statement II are False - (4) Statement I is true but Statement II is false Q11. A particle executes S.H.M., the graph of velocity as a function of displacement is: (1) a circle (2) a helix - (3) a parabola - // mathongo /// mathongo (4) an ellipse ngo /// mathongo /// mathongo Q12. A tuning fork A of unknown frequency produces 5 beats s^{-1} with a fork of known frequency 340 Hz. When fork A is filed, the beat frequency decreases to 2 beats s^{-1} . What is the frequency of fork A? (1) 335 Hz (2) 338 Hz (3) 345 Hz (4) 342 Hz ongo /// mathongo /// mathongo Q13. Given below are two statements _____ mathongo ____ mathongo ____ mathongo ____ mathongo Statement I: An electric dipole is placed at the centre of a hollow sphere. The flux of electric field through the sphere is zero, but the electric field is not zero anywhere in the sphere. Statement II: If R is the radius of a solid metallic sphere and Q be the total charge on it. The electric field at any point on the spherical surface of radius r(< R) is zero but the electric flux passing through this closed spherical surface of radius r is not In the light of the above statements, choose the correct answer from the options given below: - (1) Both Statement I and Statement II are true - (2) Statement I is false but Statement II is true - (3) Statement I is true but Statement II is false - (4) Both Statement I and Statement II are false Q14. An aeroplane, with its wings spread 10 m, is flying at a speed of 180 km h^{-1} in a horizontal direction. The total intensity of earth's field at that part is $2.5 \times 10^{-4}~Wb~m^{-2}$ and the angle of dip is $60\,^{\circ}$. The emf induced JEE Main Previous Year Paper MathonGo **Question Paper** between the tips of the plane wings will be hongo // mathongo // mathongo // mathongo (1) 108.25 mV (3) 88.37 mV - (2) 54. 125 mV - mathongo /// mathongo (4) 62.50 mV go /// mathongo /// mathongo Q15. Find the peak current and resonant frequency of the following circuit (as shown in figure). - (1) 2 A and 50 Hz - (3) 2 A and 100 Hz - (2) 0. 2 A and 100 Hz - mathongo (4) 0.2 A and 50 Hz mathongo mathongo **Q16.** Given below are two statements: one is labeled as Assertion A and the other is labeled as Reason R. Assertion A: For a simple microscope, the angular size of the object equals the angular size of the image. Reason R: Magnification is achieved as the small object can be kept much closer to the eye than 25 cm and hence it subtends a large angle. In the light of the above statements, choose the most appropriate answer from the options given below: - (1) A is false but R is true - (2) Both A and R are true but R is NOT the correct explanation of A - explanation of A(3) A is true but R is false (4) Both A and R are true and R is the correct explanation of A mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo Q17. The incident ray, reflected ray and the outward drawn normal are denoted by the unitvectors \overrightarrow{a} , band \overrightarrow{c} respectively. Then choose the correct relation for these vectors. hongo mathongo mathongo $(1)\overrightarrow{b} = \overrightarrow{a} + 2\overrightarrow{c}$ - $(2)\overrightarrow{b} = 2\overrightarrow{a} + \overrightarrow{c}$ - $(3)\overrightarrow{b} = \overrightarrow{a} 2(\overrightarrow{a} \cdot \overrightarrow{c})\overrightarrow{c} \text{ hongo}$ mathongo $(4)\overrightarrow{b} = \overrightarrow{a} \overrightarrow{c} \text{ go }$ mathongo $(4)\overrightarrow{b} = \overrightarrow{a} \overrightarrow{c} \text{ go }$ Q18. The recoil speed of a hydrogen atom after it emits a photon in going from n=5 state to n=5 state will be $(1) 4.17 \,\mathrm{m \, s}^{-1}$ $(2) 2.19 \mathrm{\ m\ s}^{-1}$ - (3) 4.34 m s^{-1} mathongo /// mathongo /// mathongo /// mathongo /// mathongo Q19. A radioactive sample is undergoing α decay, At any time t_1 , its activity is A and another time t_2 , the activity is $\frac{A}{5}$. What is the average life time for the sample? - (2) $\frac{\ln(t_2+t_1)}{2}$ (4) $\frac{t_1-t_2}{\ln 5}$ thongo ///. mathongo ///. mathongo **Q20.** Draw the output signal Y in the given combination of gates. nathongo ///. mathongo ///. mathongo **Q21.** In the reported figure of earth, the value of acceleration due to gravity is same at point A and C but it is smaller than that of its value at point B (surface of the earth). The value of OA : AB will be x : 5. The value of x : 5 is Q22. 1 mole of rigid diatomic gas performs a work of $\frac{Q}{5}$ when heat Q is supplied to it. The molar heat capacity of the gas during this transformation is $\frac{xR}{8}$. The value of x is R universal gas constant Q23. The volume V of a given mass of monoatomic gas changes with temperature T according to the relation $V = KT^{\frac{2}{3}}$. The workdone when temperature changes by 90 K will be xR. The value of x is [R universal gas constant] **Q24.** A particle executes S.H.M. with amplitude A and time period T. The displacement of the particle when its speed is half of maximum speed is $\frac{\sqrt{x}A}{2}$. The value of x is | Q26.27 similar drops of mercury are r | naintained at 10 V e | ach. All these spherical | drops combine into a single big | |---------------------------------------|----------------------|--------------------------|---------------------------------| | drop. The potential energy of the | bigger drop is | times that of a | smaller drop. | Q27. A point source of light S, placed at a distance 60 cm infront of the centre of a plane mirror of width 50 cm, hangs vertically on a wall. A man walks infront of the mirror along a line parallel to the mirror at a distance 1.2 m from it (see in the figure). The distance between the extreme points where he can see the image of the light source in the mirror is cm - Q28. Two stream of photons, possessing energies equal to twice and ten times the work function of metal are incident on the metal surface successively. The value of ratio of maximum velocities of the photoelectrons emitted in the two respective cases is x:3 The value of x is - Q29. The zener diode has a $V_z = 30$ V. The current passing through the diode for the following circuit is ___mA. - Q30. If the highest frequency modulating a carrier is 5 kHz, then the number of AM broadcast stations mothonic accommodated in a 90 kHz bandwidth are - Q31. The correct order of electron gain enthalpy is: (1) $$S > O > Se > Te$$ (2) $$O > S > Se > Te$$ $$(3) S > Se > Te > O$$ mathongo (4) $$Te > Se > S > O$$ Q32. Which pair of oxides is acidic in nature? $(1) B_2O_3$, CaO (2) N_2O , BaO (3) CaO, SiO_2 - (4) B₂O₃, SiO₂ - Q33. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: In TlI_3 , isomorphous to CsI_3 , the metal is present in +1 oxidation state. The metal has fourteen f electrons in its electronic configuration. In the light of the above statements, choose the most appropriate answer from the options given below: ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo Question Paper JEE Main Previous Year Paper MathonGo (1) A is correct but R is not correct (2) Both A and R are correct and R is the correct explanation of A (3) A is not correct but R is correct (4) Both A and R are correct but R is NOT the correct explanation of A Q34. Match List-I with List-II. | 4. Whaten Eist 1 | With List 11. | | | | | |------------------|---------------|--------------|---|--|--| | List-I | | List-II | | | | | (Molecule) | | (Bond order) | | | | | (a) | Nea | (i) | 1 | | | W. Nathongo (ii) thongo /// mathongo 2 /// mathongo 1 mathongo righthongo /// mathongo /// mathongo /// mathongo Choose the correct answer from the options given below: $$(1) \text{ (a)} \rightarrow (\text{ii)}, \text{ (b)} \rightarrow (\text{i}), \text{ (c)} \rightarrow (\text{iv}), \text{ (d)} \rightarrow (\text{iii)} \quad (2) \text{ (a)} \rightarrow (\text{iii)}, \text{ (b)} \rightarrow (\text{iv}), \text{ (c)} \rightarrow (\text{i)}, \text{ (d)} \rightarrow (\text{ii})$$ $$(2) (a) \rightarrow (iii), (b) \rightarrow (iv), (c) \rightarrow (i), (d) \rightarrow (ii)$$ $$(3) \ (a) \rightarrow (i), \ (b) \rightarrow (ii), \ (c) \rightarrow (iii), \ (d) \rightarrow (iv) \quad (4) \ (a) \rightarrow (iv), \ (b) \rightarrow (iii), \ (c) \rightarrow (ii), \ (d) \rightarrow (i)$$ Q35. Calgon is used for water treatment. Which of the following statement is NOT true about Calgon? (1) It is polymeric compound and is water soluble. (2) Calgon contains the 2nd most abundant element by weight in the Earth's crust. (3) It is also known as Graham's salt. (4) It doesnot remove Ca²⁺ ion by precipitation. **Q36.** Which of the following forms of hydrogen emits low energy β^- particles? (1) Deuterium ²H mathongo (2) Proton H⁺ (3) Tritium ³H (4) Protium ¹H Q37. In $\overset{1}{CH_2} = \overset{2}{C} = \overset{3}{CH} - \overset{4}{CH_3}$ molecule, the hybridization of carbon 1, 2, 3 and 4 respectively, are : $(1) \text{ sp}^2, \text{ sp}^3, \text{ sp}^2, \text{ sp}^3$ $(2) sp^2, sp, sp^2, sp^3$ $(3) sp^2, sp^2, sp^2, sp^3$ $(4) \operatorname{sp}^3, \operatorname{sp}, \operatorname{sp}^3, \operatorname{sp}^3$ mathongo /// mathongo Q38. The nature of charge on resulting colloidal particles when FeCl₃ is added to excess of hot water is: (1) positive (2) sometimes positive and sometimes negative (3) neutral (4) negative Q39. Match List-I with List-II List-Ingo ///. mathongo mot List-II Sodium Carbonate (a) Deacon (i) (b) Titanium mat (ii) ngo Castner-Kellner Chlorine (c) (iii) van-Arkel (d) Sodium hydroxide Solvay mathongo ///. mathongo mat (iv) Choose the correct answer from the options given below: $(1) (a) \rightarrow (i), (b) \rightarrow (iii), (c) \rightarrow (iv), (d) \rightarrow (ii) \quad (2) (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (i), (d) \rightarrow (iv)$ $(3) (a) \rightarrow (iv), (b) \rightarrow (i), (c) \rightarrow (ii), (d) \rightarrow (iii) \quad (4) (a) \rightarrow (iv), (b) \rightarrow (iii), (c) \rightarrow (i), (d) \rightarrow (ii)$ **Question Paper** # JEE Main Previous Year Paper MathonGo | Q40. Match List-I with List-II.ongo /// mathongo /// mathongo /// mathongo /// mathongo | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | List-II List-II | | /// m(a) hongo Siderite athongo /// mathongo (i) mathong Cu /// mathongo /// mathongo | | (b) Calamine (ii) Ca | | /// n(c) hongo Malachite hongo /// mathongo (iii) mathong Fe /// mathongo /// mathongo | | (d) Cryolite (iv) Al | | ///. mathongo ///. mathongo (v) mathong \mathbf{z}_n ///. mathongo ///. mathongo | | Choose the correct answer from the options given below: | | $(1) \text{ (a)} \rightarrow \text{ (iii)}, \text{ (b)} \rightarrow \text{ (i)}, \text{ (c)} \rightarrow \text{ (v)}, \text{ (d)} \rightarrow \text{ (ii)} \qquad (2) \text{ (a)} \rightarrow \text{ (i)}, \text{ (b)} \rightarrow \text{ (ii)}, \text{ (c)} \rightarrow \text{ (v)}, \text{ (d)} \rightarrow \text{ (iii)} \\$ | | $(3) \text{ (a)} \rightarrow (\text{iii}), \text{ (b)} \rightarrow (\text{v}), \text{ (c)} \rightarrow (\text{i)}, \text{ (d)} \rightarrow (\text{iv}) \text{(4)} \text{ (a)} \rightarrow (\text{i)}, \text{ (b)} \rightarrow (\text{ii)}, \text{ (c)} \rightarrow (\text{iii}), \text{ (d)} \rightarrow (\text{iv})$ | | Q41. Match List-I with List-II. mathongo mathongo mathongo mathongo mathongo | | List-II | | ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo | | (a) N_2^+Cl Cu_2Cl_2 (i) Wurtz reaction mathongo /// mathongo | | (a) N_2 CI Cu_2 Cl ₂ (i) Wurtz reaction mathons we mathons | | | | ///. mathongo ///. mathongo ///. mathongo ///. mathongo | | (b) $N_2^+Cl^-$ Cu, HCl (ii) Sandmeyer reaction mathongo /// mathongo /// mathongo | | That one of the mattering of the mattering of the mattering | | * | | $(c) \ 2 \ CH_3 \ CH_2 \ Cl + 2Na \xrightarrow{Ether} C_2H_5 - C_2H_5 + 2 \ NaCl $ (iii) Fittig reaction mathongo $(c) \ CH_3 \ CH_2 \ Cl + 2Na \xrightarrow{Ether} C_2H_5 + 2 \ NaCl $ | | (d) $2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_2H_5 - C_2H_5 + 2NaCl$ (iii) Fittig reaction mothongo (iv) Gatterman reaction | | | | (d) $2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2 \text{NaCl}$ (iv) Gatterman reaction | | (d) $2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2NaCl$ (iv) Gatterman reaction Choose the correct answer from the options given below: | | $ \begin{array}{c} \text{(d) } 2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2\text{NaCl} & \text{(iv) Gatterman reaction} \\ \text{Choose the correct answer from the options given below:} \\ \text{(1) } (a) \rightarrow \text{(iii)}, \ (b) \rightarrow \text{(iv)}, \ (c) \rightarrow \text{(i)}, \ (d) \rightarrow \text{(ii)} & \text{(2) } (a) \rightarrow \text{(ii)}, \ (b) \rightarrow \text{(i)}, \ (c) \rightarrow \text{(iv)}, \ (d) \rightarrow \text{(iii)} \\ \text{(3) } (a) \rightarrow \text{(iii)}, \ (b) \rightarrow \text{(i)}, \ (c) \rightarrow \text{(iv)}, \ (d) \rightarrow \text{(ii)} & \text{(4) } (a) \rightarrow \text{(ii)}, \ (b) \rightarrow \text{(iv)}, \ (c) \rightarrow \text{(i)}, \ (d) \rightarrow \text{(iii)} \\ \end{array} $ | | $ \begin{array}{c} \text{(d) } 2C_6H_5Cl + 2Na \overset{\text{Ether}}{\longrightarrow} C_6H_5 - C_6H_5 + 2\text{NaCl} & \text{(iv) Gatterman reaction} \\ \text{Choose the correct answer from the options given below:} \\ \text{(1) } (a) \rightarrow \text{(iii)}, \ (b) \rightarrow \text{(iv)}, \ (c) \rightarrow \text{(i)}, \ (d) \rightarrow \text{(ii)} & \text{(2) } (a) \rightarrow \text{(ii)}, \ (b) \rightarrow \text{(i)}, \ (c) \rightarrow \text{(iv)}, \ (d) \rightarrow \text{(iii)} \\ \text{(3) } (a) \rightarrow \text{(iii)}, \ (b) \rightarrow \text{(i)}, \ (c) \rightarrow \text{(iv)}, \ (d) \rightarrow \text{(iii)} \\ \end{array} $ | | $(d)\ 2C_6H_5Cl+2Na \xrightarrow{\text{Ether}} C_6H_5-C_6H_5+2\ NaCl \qquad \text{(iv) Gatterman reaction}$ Choose the correct answer from the options given below: $(1)\ (a)\to (iii),\ (b)\to (iv),\ (c)\to (i),\ (d)\to (ii) \qquad (2)\ (a)\to (ii),\ (b)\to (i),\ (c)\to (iv),\ (d)\to (iii)$ $(3)\ (a)\to (iii),\ (b)\to (i),\ (c)\to (iv),\ (d)\to (ii) \qquad (4)\ (a)\to (ii),\ (b)\to (iv),\ (c)\to (i),\ (d)\to (iii)$ Q42. Identify A in the given reaction. | | $(d)\ 2C_6H_5Cl+2Na \xrightarrow{\text{Ether}} C_6H_5-C_6H_5+2\ NaCl \qquad \text{(iv) Gatterman reaction}$ Choose the correct answer from the options given below: $(1)\ (a)\to (iii),\ (b)\to (iv),\ (c)\to (i),\ (d)\to (ii) \qquad (2)\ (a)\to (ii),\ (b)\to (i),\ (c)\to (iv),\ (d)\to (iii)$ $(3)\ (a)\to (iii),\ (b)\to (i),\ (c)\to (iv),\ (d)\to (ii) \qquad (4)\ (a)\to (ii),\ (b)\to (iv),\ (c)\to (i),\ (d)\to (iii)$ Q42. Identify A in the given reaction. | | $(d)\ 2C_6H_5Cl+2Na \xrightarrow{Ether} C_6H_5-C_6H_5+2\ NaCl \qquad (iv)\ Gatterman\ reaction$ Choose the correct answer from the options given below: $(1)\ (a)\to (iii),\ (b)\to (iv),\ (c)\to (i),\ (d)\to (ii) \qquad (2)\ (a)\to (ii),\ (b)\to (i),\ (c)\to (iv),\ (d)\to (iii)$ $(3)\ (a)\to (iii),\ (b)\to (i),\ (c)\to (iv),\ (d)\to (iii) \qquad (4)\ (a)\to (ii),\ (b)\to (iv),\ (c)\to (i),\ (d)\to (iii)$ Q42. Identify A in the given reaction. OH OH $SOCl_2\to A\ (Major\ Product)$ | | $(d)\ 2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2\text{NaCl} \qquad \text{(iv) Gatterman reaction}$ Choose the correct answer from the options given below: $(1)\ (a) \to (\text{iii}),\ (b) \to (\text{iv}),\ (c) \to (\text{i}),\ (d) \to (\text{ii}) \qquad (2)\ (a) \to (\text{ii}),\ (b) \to (\text{i}),\ (c) \to (\text{iv}),\ (d) \to (\text{iii})$ $(3)\ (a) \to (\text{iii}),\ (b) \to (\text{i}),\ (c) \to (\text{iv}),\ (d) \to (\text{iii}) \qquad (4)\ (a) \to (\text{ii}),\ (b) \to (\text{iv}),\ (c) \to (\text{i}),\ (d) \to (\text{iii})$ Q42. Identify A in the given reaction. $OH \longrightarrow OH$ | | $(d)\ 2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2\text{NaCl} \qquad \text{(iv) Gatterman reaction}$ $(1)\ (a)\ \rightarrow\ (iii),\ (b)\ \rightarrow\ (iv),\ (c)\ \rightarrow\ (i),\ (d)\ \rightarrow\ (ii) \qquad (2)\ (a)\ \rightarrow\ (ii),\ (b)\ \rightarrow\ (i),\ (c)\ \rightarrow\ (iv),\ (d)\ \rightarrow\ (iii)$ $(3)\ (a)\ \rightarrow\ (iii),\ (b)\ \rightarrow\ (i),\ (c)\ \rightarrow\ (iv),\ (d)\ \rightarrow\ (iii) \qquad (4)\ (a)\ \rightarrow\ (ii),\ (b)\ \rightarrow\ (iv),\ (c)\ \rightarrow\ (i),\ (d)\ \rightarrow\ (iii)$ $Q42. \text{Identify A in the given reaction.}$ OH OH $A\ (Major\ Product)$ $Mathongo\ (Major\ Product)$ | | $(d)\ 2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2\text{NaCl} \qquad \text{(iv) Gatterman reaction}$ Choose the correct answer from the options given below: $(1)\ (a) \to (\text{iii}),\ (b) \to (\text{iv}),\ (c) \to (\text{i}),\ (d) \to (\text{ii}) \qquad (2)\ (a) \to (\text{ii}),\ (b) \to (\text{i}),\ (c) \to (\text{iv}),\ (d) \to (\text{iii})$ $(3)\ (a) \to (\text{iii}),\ (b) \to (\text{i}),\ (c) \to (\text{iv}),\ (d) \to (\text{iii}) \qquad (4)\ (a) \to (\text{ii}),\ (b) \to (\text{iv}),\ (c) \to (\text{i}),\ (d) \to (\text{iii})$ Q42. Identify A in the given reaction. $OH \longrightarrow OH$ | | $(d) \ 2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2\text{NaCl} \qquad \text{(iv) Gatterman reaction}$ $(1) \ (a) \ (iii), \ (b) \ \rightarrow (iv), \ (c) \ \rightarrow (i), \ (d) \ \rightarrow (ii) \qquad (2) \ (a) \ \rightarrow (ii), \ (b) \ \rightarrow (i), \ (c) \ \rightarrow (iv), \ (d) \ \rightarrow (iii)$ $(3) \ (a) \ \rightarrow (iii), \ (b) \ \rightarrow (i), \ (c) \ \rightarrow (iv), \ (d) \ \rightarrow (ii) \qquad (4) \ (a) \ \rightarrow (ii), \ (b) \ \rightarrow (iv), \ (c) \ \rightarrow (i), \ (d) \ \rightarrow (iii)$ $(2) \ (a) \ \rightarrow (ii), \ (b) \ \rightarrow (iv), \ (c) \ \rightarrow (iv), \ (d) \ \rightarrow (iii) \qquad \rightarrow$ | | $(d)\ 2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2\text{NaCl} \qquad \text{(iv) Gatterman reaction}$ $(1)\ (a)\ \rightarrow\ (iii),\ (b)\ \rightarrow\ (iv),\ (c)\ \rightarrow\ (i),\ (d)\ \rightarrow\ (ii) \qquad (2)\ (a)\ \rightarrow\ (ii),\ (b)\ \rightarrow\ (i),\ (c)\ \rightarrow\ (iv),\ (d)\ \rightarrow\ (iii)$ $(3)\ (a)\ \rightarrow\ (iii),\ (b)\ \rightarrow\ (i),\ (c)\ \rightarrow\ (iv),\ (d)\ \rightarrow\ (iii) \qquad (4)\ (a)\ \rightarrow\ (ii),\ (b)\ \rightarrow\ (iv),\ (c)\ \rightarrow\ (i),\ (d)\ \rightarrow\ (iii)$ $Q42. \text{Identify A in the given reaction.}$ OH OH $A\ (Major\ Product)$ $Mathongo\ (Major\ Product)$ | | $(d) \ 2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2NaCl \qquad \text{(iv) Gatterman reaction}$ $(Does the correct answer from the options given below: \qquad (1) \ (a) \to (iii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (ii) \qquad (2) \ (a) \to (ii), \ (b) \to (i), \ (c) \to (iv), \ (d) \to (iii)$ $(3) \ (a) \to (iii), \ (b) \to (i), \ (c) \to (iv), \ (d) \to (ii) \qquad (4) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (iii)$ $(3) \ (a) \to (iii), \ (b) \to (i), \ (c) \to (iv), \ (d) \to (iii) \qquad (d) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (iii)$ $(3) \ (a) \to (iii), \ (b) \to (iv), \ (c) \to (iv), \ (d) \to (iii)$ $(4) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (iv), \ (d) \to (iii)$ $(3) \ (a) \to (iii), \ (b) \to (iv), \ (c) \to (iv), \ (d) \to (iii)$ $(4) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (iii)$ $(4) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (iii)$ $(5) \to (1) (1)$ | | $(d) \ 2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2\text{NaCl} \qquad \text{(iv) Gatterman reaction}$ $(1) \ (a) \ (iii), \ (b) \ \rightarrow (iv), \ (c) \ \rightarrow (i), \ (d) \ \rightarrow (ii) \qquad (2) \ (a) \ \rightarrow (ii), \ (b) \ \rightarrow (i), \ (c) \ \rightarrow (iv), \ (d) \ \rightarrow (iii)$ $(3) \ (a) \ \rightarrow (iii), \ (b) \ \rightarrow (i), \ (c) \ \rightarrow (iv), \ (d) \ \rightarrow (ii) \qquad (4) \ (a) \ \rightarrow (ii), \ (b) \ \rightarrow (iv), \ (c) \ \rightarrow (i), \ (d) \ \rightarrow (iii)$ $(2) \ (a) \ \rightarrow (ii), \ (b) \ \rightarrow (iv), \ (c) \ \rightarrow (iv), \ (d) \ \rightarrow (iii) \qquad \rightarrow$ | | $(d) \ 2C_6H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2NaCl \qquad \text{(iv) Gatterman reaction}$ $(Does the correct answer from the options given below: \qquad (1) \ (a) \to (iii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (ii) \qquad (2) \ (a) \to (ii), \ (b) \to (i), \ (c) \to (iv), \ (d) \to (iii)$ $(3) \ (a) \to (iii), \ (b) \to (i), \ (c) \to (iv), \ (d) \to (ii) \qquad (4) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (iii)$ $(3) \ (a) \to (iii), \ (b) \to (i), \ (c) \to (iv), \ (d) \to (iii) \qquad (d) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (iii)$ $(3) \ (a) \to (iii), \ (b) \to (iv), \ (c) \to (iv), \ (d) \to (iii)$ $(4) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (iv), \ (d) \to (iii)$ $(3) \ (a) \to (iii), \ (b) \to (iv), \ (c) \to (iv), \ (d) \to (iii)$ $(4) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (iii)$ $(4) \ (a) \to (ii), \ (b) \to (iv), \ (c) \to (i), \ (d) \to (iii)$ $(5) \to (1) (1)$ | | /// n(1)hongo /Cl mathongo /// mathongo (2) mathonOH /// mathongo /// mathongo | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo | | | mathorical CH2Cl mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo | | | mathongo (4) matho | | | mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// | | | matho OH CH2Clithongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// | | | Q43.nathong ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo | | | mathongo /// | | | mathongo mat | | | (2) CH ₂ CH ₃ mathongo (2) CH ₂ CH ₃ mathongo (2) mathongo (3) mathongo (4) mathongo (4) mathongo (5) mathongo (6) mathongo (7) mathong | | | /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// | | | mathongo /// // mat | | | mathong /// mathong /// mathong /// mathong /// mathong /// mathong | | | /// mathango // mathongo // mathongo // mathongo // mathongo // mathongo | | | W. mathongo mat | | | (1) aldehyde (2) amine (4) ether (4) mathongo (7) mathongo (8) mathong | | | Q45. Identify A in the given chemical reaction. thongo /// mathongo /// mathongo /// mathongo /// mathongo /// | | | MaOH Mathon | | | /// mathongo | | | | | Q49. Match List-I with List-II. Match Match Match List-II. Match Match List-II. Match Match List-II. Match Match List-II. Match Matc List-Ihongo ///. mathongo ///. mathongo ///. mathongo List-I - β D–Galactose and β D–Glucose (a) Sucrose - (ii) $11\alpha D$ -Glucose and βD -Fructose thougo // mathongo // mathongo (b) Lactose - (c) Maltose (iii) $\alpha - D$ -Glucose and $\alpha - D$ -Glucose Choose the correct answer from the options given below: mathongo // mathongo // mathongo - (1) (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (i) - (2) (a) \rightarrow (iii), (b) \rightarrow (i), (c) \rightarrow (ii) - $(3) (a) \rightarrow (ii), (b) \rightarrow (i), (c) \rightarrow (iii)$ mothonoo $(4) (a) \rightarrow (i), (b) \rightarrow (iii), (c) \rightarrow (ii)$ - Q50. Seliwanoff test and Xanthoproteic test are used for the identification of _ and _ respectively. - (1) aldoses, ketoses (2) ketoses, proteins (3) proteins, ketoses - (4) ketoses, aldoses - Q51. The NaNO₃ weighed out to make 50 mL of an aqueous solution containing 70.0 mg Na⁺ per mL is g. (Rounded off to the nearest integer) [Given : Atomic weight in $gmol^{-1} - Na : 23; N : 14; O : 16$] - Q52. A ball weighing 10 g is moving with a velocity of 90 m s⁻¹. If the uncertainty in its velocity is 5%, then the uncertainty in its position is $\times 10^{-33}$ m. (Rounded off to the nearest integer) mathomas /// mathomas [Given: $h = 6.63 \times 10^{-34} \text{ Js}$] - Q53. The average S F bond energy in $kJ \mod^{-1}$ of SF_6 is . (Rounded off to the nearest integer) [Given: The values of standard enthalpy of formation of $SF_6(g)$, S(g) and F(g) are -1100, 275 and 80 kJ mol⁻¹ respectively. - Q54. The pH of ammonium phosphate solution, if pk_a of phosphoric acid and pk_b of ammonium hydroxide are 5. 23 and 4. 75 respectively, is - Q55. In mildly alkaline medium, thiosulphate ion is oxidized by MnO_4^- to "A". The oxidation state of sulphur in //A// is - Q56. The number of octahedral voids per lattice site in a lattice is . (Rounded off to the nearest integer) - Q57. When 12. 2 g of benzoic acid is dissolved in 100 g of water, the freezing point of solution was found to be $-0.93 \, ^{\circ}\mathrm{C}(\mathrm{K_f}(\mathrm{H_2O}) = 1.86 \, \mathrm{K \ kg \ mol^{-1}})$. The number (n) of benzoic acid molecules associated (assuming 100% association) is _. ___ mathona - **Q58.** Emf of the following cell at 298 K in V is $x \times 10^{-2}$ $$m Zn m Zn^{2+}(0.1 m M) m \parallel Ag^+(0.01 m M) m \mid Ag m mathongo m /// m$$ The value of x is _____ (Rounded off to the nearest integer) $${ m Given: E_{Zn^{2+}/Zn}^{ heta} = -0.76 \ V; \ E_{Ag^{+}/Ag}^{ heta} = +0.80 \ V; \ \ rac{2.303 \, { m RT}}{ m F} = 0.059} }$$ - Q59. If the activation energy of a reaction is 80.9 kJ mol⁻¹, the fraction of molecules at 700 K, having enough energy to react to form products is e^{-x} . The value of x is (Rounded off to the nearest integer) [Use $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ - **Q60.** The number of stereo isomers possible for $[Co(ox)_2(Br)(NH_3)]^{2-}$ is m[ox = oxalate] // mathongo /// mathongo /// mathongo /// mathongo MathonGo **Q61.** A natural number has prime factorization given by $n = 2^x 3^y 5^z$, where y and z are such that y + z = 5 and $y^{-1} + z^{-1} = \frac{5}{6}$, y > z. Then the number of odd divisors of n, including 1, is: - n(1).12ngo /// mathongo /// mathongo (2).6mathongo /// mathongo /// mathongo (3) 11 (4) 6x **Q62.** The sum of the series $\sum_{n=1}^{\infty} \frac{n^2 + 6n + 10}{(2n+1)!}$ is equal to - (1) $\frac{41}{8}e + \frac{19}{8}e^{-1} + 10$ (2) $\frac{41}{8}e + \frac{19}{8}e^{-1} 10$ (4) $\frac{41}{8}e \frac{19}{8}e^{-1} 10$ **Q63.** If 0 < a, b < 1, and $\tan^{-1} a + \tan^{-1} b = \frac{\pi}{4}$, then the value of $(a + b) - \left(\frac{a^2 + b^2}{2}\right) + \left(\frac{a^3 + b^3}{3}\right) - \left(\frac{a^4 + b^4}{4}\right) + \dots$ - $m(1)\log_{e}(\frac{e}{2})$ /// mathongo /// mathongo /// mathongo /// mathongo (3) $e^2 - 1$ $(4) \log_{10} 2$ **Q64.** If the locus of the mid-point of the line segment from the point (3,2) to a point on the circle, $x^2 + y^2 = 1$ is a circle of radius r, then r is equal to - $(1)^{\frac{1}{4}}$ - /// mathongo /// mathongo /// mathongo /// mathongo - $(3) \frac{1}{3}$ $(4) \frac{1}{2}$ **Q65.** Let A(1,4) and B(1,-5) be two points. Let P be a point on the circle $((x-1))^2+(y-1)^2=1$, such that $(PA)^2 + (PB)^2$ have maximum value, then the points, P, A and B lie on (1) a hyperbola (2) a straight line (3) an ellipse (4) a parabola **Q66.** Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. Then $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ equals: - (1) a + 4 - mathongo /// mathongo (2) 2a-4 nongo - (3) 4 2a (4) 2a + 4 **Q67.** Let $F_1(A, B, C) = (A \land \neg B) \lor [\neg C \land (A \lor B)] \lor \neg A$ and $F_2(A, B) = (A \lor B) \lor (B \to \neg A)$ be two logical expressions. Then: - (1) F_1 is a tautology but F_2 is not a tautology - (2) F_1 is not a tautology but F_2 is a tautology - (3) Both F_1 and F_2 are not tautologies - (4) F_1 and F_2 both are tautologies **Q68.** Consider the following system of equations: $$x + 2y - 3z = a$$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo $$2x + 6y - 11z = b$$ $$x - 2y + 7z = c$$ where a,b and c are real constants. Then the system of equations : - (1) has a unique solution when 5a = 2b + c - (2) has no solution for all a, b and c - (3) has infinite number of solutions when - (4) has a unique solution for all a, b and c 5a = 2b + c **Q69.** Let $A = \{1, 2, 3, \dots, 10\}$ and $f: A \rightarrow A$ be defined as $$f(k) = egin{cases} k+1 & ext{if } k ext{ is odd} \\ k & ext{if } k ext{ is even} \end{cases}$$ Question Paper MathonGo Then the number of possible functions $g: A \to A$ such that gof = f is: _____ mathongo ____ mathongo $(1)^{10}C_{5}$ - $_{\rm m}$ (3) 5! $_{\rm max}$ ///. mathongo ///. mathongo ///. mathongo ///. mathongo **Q70.** Let $f(x) = \sin^{-1} x$ and $g(x) = \frac{x^2 - x - 2}{2x^2 - x - 6}$. If $g(2) = \lim_{x \to 2} g(x)$, then the domain of the function $f \circ g$ is $(1) (-\infty, -1] \cup [2, \infty)$ $(2) \left(-\infty, -2\right] \cup \left[-\frac{3}{2}, \infty\right)$ Q71. $(3) \left(-\infty,-2\right] \cup \left[-\frac{4}{3},\infty\right) \qquad (4) \left(-\infty,-2\right] \cup \left[-1,\infty\right)$ Let $f:R \rightarrow R$ be defined as $f(x) = \begin{cases} 2\sin\left(-\frac{\pi x}{2}\right), & \text{if } x < -1 \\ |ax^2 + x + b|, & \text{if } -1 \leq x \leq 1 \\ \sin(\pi x), & \text{if } x > 1 \end{cases}$ If f(x) is continuous on R, then a + b equals : (1) 1 (3) -3 (4) -1 mathongo /// mathongo /// mathongo Q72. The triangle of maximum area that can be inscribed in a given circle of radius 'r' is: - (1) An equilateral triangle having each of its side of (2) An isosceles triangle with base equal to 2r. length $\sqrt{3}r$. - (3) An equilateral triangle of height $\frac{2r}{3}$. (4) A right angle triangle having two of its sides of length 2r and r. **Q73.** For x>0, if $f(x)=\int_1^x \frac{\log_e t}{(1+t)}dt$, then $f(e)+f\left(\frac{1}{e}\right)$ is equal to mathematically mathematically mathematical m - (1) 0 (2) $\frac{1}{2}$ (4) 1 mathongo /// mathongo /// mathongo /// mathongo Q74. Let $f(x)=\int_0^x e^t f(t)dt+e^x$ be a differentiable function for all $x\in R$. Then f(x) equals: (1) $e^{(e^x-1)}$ (3) $2e^{e^x} - 1$ $(4) \ 2e^{(e^x-1)} - 1$ Q75. Let A_1 be the area of the region bounded by the curves $y = \sin x$, $y = \cos x$ and y-axis in the first quadrant. Also, let A_2 be the area of the region bounded by the curves $y=\sin x, y=\cos x, x$ -axis and $x=\frac{\pi}{2}$ in the first quadrant. Then, - (1) $2A_1=A_2$ and $A_1+A_2=1+\sqrt{2}$ (2) $A_1:A_2=1:\sqrt{2}$ and $A_1+A_2=1$ - (3) $A_1: A_2 = 1: 2$ and $A_1 + A_2 = 1$ - (4) $A_1 = A_2$ and $A_1 + A_2 = \sqrt{2}$ Q76. Let slope of the tangent line to a curve at any point P(x,y) be given by $\frac{xy^2+y}{x}$. If the curve intersects the line x + 2y = 4 at x = -2, then the value of y, for which the point (3, y) lies on the curve, is: - (1) $=\frac{4}{3}$ go /// mathongo /// mathongo /// mathongo /// mathongo Q77. If vectors $\vec{a}_1 = x\hat{i} - \hat{j} + \hat{k}$ and $\vec{a}_2 = \hat{i} + y\hat{j} + z\hat{k}$ are collinear, then a possible unit vector parallel to the vector $x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ is: $(1) \frac{1}{\sqrt{2}} \left(-\hat{\mathbf{j}} + \hat{\mathbf{k}} \right)$ - $n(3) \frac{1}{\sqrt{2}} (\hat{\mathbf{i}} \hat{\mathbf{j}})$ mathongo wathongo (4) $\frac{1}{\sqrt{3}} (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ mathongo wathongo | Q78. Let L be a li | ine obtained | from the interse | ection of two plar | es x + 2y + z = | 6 and $y + 2z = 4$. If | point othong | |-----------------------------|-----------------|------------------|-----------------------|---------------------|------------------------------|--------------| | $P(lpha,eta,\gamma)$ is | s the foot of j | perpendicular f | from $(3,2,1)$ on I | , then the value of | of $21(lpha+eta+\gamma)$ equ | ıals: | - (1) 102 go /// mathongo /// mathongo (2) 142 athongo /// mathongo /// mathongo (3)68 (4) 136 **Q79.** If the mirror image of the point (1,3,5) with respect to the plane 4x - 5y + 2z = 8 is (α, β, γ) , then $5(\alpha + \beta + \gamma)$ equals : (1) 43 ngo /// mathongo /// mathongo /// mathongo /// mathongo (3) 41 (4) 39 **Q80.** A seven digit number is formed using digits 3, 3, 4, 4, 4, 5, 5. The probability, that number so formed is mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo $(1) \frac{4}{7}$ mathongo /// mathongo /// mathongo **Q81.** Let α and β be two real numbers such that $\alpha + \beta = 1$ and $\alpha\beta = -1$. Let $p_n = (\alpha)^n + (\beta)^n$, $p_{n-1} = 11$ and **Q82.** Let z be those complex numbers which satisfy $|z+5| \le 4$ and $z(1+i) + \overline{z}(1-i) \ge -10, i = \sqrt{-1}$. If the **Q83.** The total number of 4-digit numbers whose greatest common divisor with 18 is 3 is ____ **Q84.** If the arithmetic mean and the geometric mean of the $p^{\rm th}$ and $q^{\rm th}$ terms of the sequence $-16, 8, -4, 2, \ldots$ satisfy the equation $4x^2 - 9x + 5 = 0$, then p + q is equal to though mathon math **Q85.** Let L be a common tangent line to the curves $4x^2 + 9y^2 = 36$ and $(2x)^2 + (2y)^2 = 31$. Then the square of the slope of the line L is \cdot . **Q86.** Let X_1, X_2, \ldots, X_{18} be eighteen observations such that $\sum_{i=1}^{18} (X_i - \alpha) = 36$ and $\sum_{i=1}^{18} (X_i - \beta)^2 = 90$, where α and β are distinct real numbers. If the standard deviation of these observations is 1, then the value of If the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix}$ satisfies the equation $A^{20} + \alpha A^{19} + \beta A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ for some real numbers Q87. α and β , then $\beta - \alpha$ is equal to ____ nathonao **Q88.** Let the normals at all the points on a given curve pass through a fixed point (a, b). If the curve passes through (3,-3) and $(4,-2\sqrt{2})$, given that $a-2\sqrt{2}$ b=3, then (a^2+b^2+ab) is equal to _____. **Q89.** Let a be an integer such that all the real roots of the polynomial $2x^5 + 5x^4 + 10x^3 + 10x^2 + 10x + 10$ lie in the interval (a, a + 1). Then, |a| is equal to **Q90.** If $I_{m,n} = \int_0^1 x^{m-1} (1-x)^{n-1} dx$, for $m,n\geqslant 1$, and $\int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \alpha I_{m,n}, \ \alpha\in R$, then α equals mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo | ANSWER K | KEYS | miningo | /7. | marine go | ///. | nun go | ///. | mulio go | ///. | mathorgo | |-------------------------------|------------------|-----------------------------|------|--------------------------------|------------------|--------------------|----------|------------------------|------|---------------------| | | 2. (1)/// | 3. (1) ₁₀ | 111. | 4. (4) _{nongo} | 5. (2) | 6. (4) | 111. | ma ⁷ •(1)ao | 111. | 8. (3) hongo | | | 10. (1) | 11. (4) | | 12. (1) | 13. (3) | 14. (1 | | 15. (4) | | 16. (4) | | 17. (3) athon 1 | 18. (1) | 19. (3) | | 20. (1) ongo | 21. (4) | thon 22. (2 | 5) | 23. (60) | | 24. (3) ongo | | 25. (7) 2 | 26. (243) | 27. (150) | | 28. (1) | 29. (9) | 30. (9 |) | 31. (3) | | 32. (4) | | 33. (4) 3 | 34. (2) | 35. (2) | | 36. (3) | 37. (2) | 38. (1 | //.
) | 39. (4) | | 40. (3) | | 41. (4) | 12. (2) | 43. (4) | | 44. (1) | 45. (2) | 46. (1 |)// | 47. (2) | | 48. (1) | | 49. (3) 5 | 50. (2) | 51. (13) | | 52. (1) | 53. (309) | 54. (7 |) | 55. (6) | | 56. (1) | | 57. (2) athon 5 | 58. (147) | 59. (14) | | 60. (3) ongo | 61. (1) | thon 62. (4 |)4. | ma 63. (4) | | 64. (4) ongo | | 65. (2) 6 | 66. (3) | 67. (2) | | 68. (3) | 69. (4) | 70. (3 |) | 71. (4) | | 72. (1) | | 73. (2) 7 | 74. (4) | 75. (2) | | 76. (3) | 77. (4) | 78. (1 |)". | 79. (2) | | 80. (2) | | 81. (324) 8 | 32. (48) | 83. (1000 |) | 84. (10) | 85. (3) | 86. (4 |)// | 87. (4) | | 88. (9) | | 89. (2) 9 | 90. (1) |