Question Paper

Q1	1. Consider the efficiency of Carnot's engine is given by	$\eta = rac{lpha eta}{\sin heta} \log_{\mathrm{e}} rac{eta x}{kT}$, where $lpha$ and eta are constan	ts. If T is
	temperature, k is Boltzman constant, θ is angular disp	placement and x has the dimensions of length.	Then,
	choose the incorrect option. ngo /// mathongo		
	(1) Dimensions of β is same as that of force.	(2) Dimensions of $\alpha^{-1}x$ is same as that of en	iergy.
	(3) Dimensions of $\eta^{-1} \sin \theta$ is same as that of $\alpha \beta$	(4) Dimensions of α is same as that of β	
Q2	2. At time $t=0$ a particle starts travelling from a heigh		

(1) -30y

(3) 3x + 15y

(4) $3x + 15y + 7\hat{z}$

 $\mathbf{Q3.}$ A uniform metal chain of mass m and length L passes over a massless and frictionless pulley. It is released from rest with a part of its length l is hanging on one side and rest of its length L-l is hanging on the other side of the pulley. At a certain point of time, when $l = \frac{L}{x}$, the acceleration of the chain is $\frac{g}{2}$. The value of x is _____.

(3) 1.5

Q4. A bullet of mass 200 g having initial kinetic energy 90 J is shot inside a long swimming pool as shown in the figure. If it's kinetic energy reduces to 40 J within 1 s, the minimum length of the pool, the bullet has to travel so that it completely comes to rest is

Q5. Assume there are two identical simple pendulum Clocks-1 is placed on the earth and Clock-2 is placed on a space station located at a height h above the earth surface. Clock-1 and Clock-2 operate at time periods 4 s and 6 s respectively. Then the value of h is -

(consider radius of earth $R_E=6400\,{
m km}$ and g on earth $10\,{
m m\,s^{-2}})$

(1) 1200 km

(2) 1600 km

(3) 3200 km

/// mathongo /// mathongo /// mathongo /// mathongo

JEE Main Previous Year Paper

Question Paper MathonGo

- Q6. A pressure-pump has a horizontal tube of cross-sectional area 10 cm^2 for the outflow of water at a speed of 20 m s^{-1} . The force exerted on the vertical wall just in front of the tube which stops water horizontally flowing out of the tube, is: [given: density of water = 1000 kg m^{-3}] at honor
 - (1) 300 N

(2) 500 N

- (3) 250 N
- /// mathongo /// mathongo (4) 400 N_{thongo} /// mathongo //
- Q7. Consider a cylindrical tank of radius 1 m is filled with water. The top surface of water is at 15 m from the bottom of the cylinder. There is a hole on the wall of cylinder at a height of 5 m from the bottom. A force of 5×10^5 N is applied an the top surface of water using a piston. The speed of efflux from the hole will be:

 (given atmospheric pressure $P_A = 1.01 \times 10^5$ P_a , density of water $\rho_w = 1000$ kg m⁻³ and gravitational acceleration g = 10 m s⁻²)

- (1) 11.6 m s^{-1}
- mathongo (2) $10.8 \,\mathrm{m \, s^{-1}}$ go /// mathongo /// mathongo

 $(3) 17.8 \text{ m s}^{-1}$

- $(4) 14.4 \text{ m s}^{-1}$
- **Q8.** A vessel contains 14 g of nitrogen gas at a temperature of 27° C. The amount of heat to be transferred to the gas to double the r.m.s. speed of its molecules will be: (Take $R = 8.32 \text{ J mol}^{-1} \text{ k}^{-1}$)
 - (1) 2229 J

(2) 5616 J

(3) 9360 J

- (4) 13, 104 J
- Q9. A uniform electric field $E = \left(\frac{8m}{e}\right) \text{V m}^{-1}$ is created between two parallel plates of length 1 m as shown in figure, (where m = mass of electron and e = charge of electron). An electron enters the field symmetrically between the plates with a speed of 2 m s⁻¹. The angle of the deviation (θ) of the path of the electron as it comes out of the field will be

 $(1) \tan^{-1}(4)$

mathongo (2) $\tan^{-1}(2)$ ngg /// mathongo /// mathongo

(3) $\tan^{-1}(\frac{1}{3})$

- $(4) \tan^{-1}(3)$
- Q10. A slab of dielectric constant K has the same crosssectional area as the plates of a parallel plate capacitor and thickness $\frac{3}{4}d$, where d is the separation of the plates. The capacitance of the capacitor when the slab is inserted

MathonGo

Question Paper

between the plates will be : 100 /// mathongo /// mathongo

(Given C_0 = capacitance of capacitor with air as medium between plates.)

(2) $\frac{3KC_0}{3+K}$ (4) $\frac{K}{4+K}$

 $(3) \frac{3+K}{4KC_0}$

Q11. Given below are two statements:

Statement I: A uniform wire of resistance 80Ω is cut into four equal parts. These parts are now connected in parallel. The equivalent resistance of the combination will be 5 Ω .

Statement II: Two resistance 2R and 3R are connected in parallel in an electric circuit. The value of thermal energy developed in 3R and 2R will be in the ratio 3:2.

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Both statement I and statement II are correct (2) Both statement I and statement II are incorrect
- (3) Statement I is correct but statement II is incorrect (4) Statement I is incorrect but statement II is

correct.

Q12. A triangular shaped wire carrying 10 A current is placed in a uniform magnetic field of 0.5 T, as shown in figure. The magnetic force on segment CD is (Given BC = CD = BD = 5 cm).

(1) 0.126 N

(2) 0.312 N

(3) 0.216 N

- (4) 0, 245 N
- Q13. The magnetic field at the center of current carrying circular loop is B_1 . The magnetic field at a distance of $\sqrt{3}$ times radius of the given circular loop from the center on its axis is B_2 . The value of $\frac{B_1}{B_2}$ will be mathongo (2) $12:\sqrt{5}$ (4) $5:\sqrt{3}$ mathongo (7) mathongo
 - (1) 9:4

(3) 8:1

- Q14. A transformer operating at primary voltage 8 kV and secondary voltage 160 V serves a load of 80 kW. Assuming the transformer to be ideal with purely resistive load and working on unity power factor, the loads in the primary and secondary circuit would be
 - (1) 800Ω and 1.06Ω

(2) 10Ω and 500Ω

(3) 800 Ω and 0. 32 Ω

- (4) 1.06 Ω and 500 Ω
- Q15. Sun light falls normally on a surface of area 36 cm² and exerts an average force of 7.2×10^{-9} N within a time period of 20 minutes. Considering a case of complete absorption, the energy flux of incident light is
 - (1) 25.92 \times 10² W cm⁻²

- (2) $8.64 \times 10^{-6} \text{ W cm}^{-2}$
- (3) $6.0~\mathrm{W}~\mathrm{cm}^{-2}$ mathongo /// mathongo (4) $0.06~\mathrm{W}~\mathrm{cm}^{-2}$ /// mathongo ///
- Q16. The power of a lens (biconvex) is 1.25 m⁻¹ in particular medium. Refractive index of the lens is 1.5 and radii of curvature are 20 cm and 40 cm respectively. The refractive index of surrounding medium:

Question Paper

- m(1) 1.0 go /// mathongo // mathongo /// mathongo // ma
- Q17. Two streams of photons, possessing energies to five and ten times the work function of metal are incident on the metal surface successively. The ratio of the maximum velocities of the photoelectron emitted, in the two cases respectively, will be
 - (1) 1 : 2

- (3) 2:3
- (2) 1 : 3 /// mathongo /// mathongo /// mathongo ///
- Q18. A radioactive sample decays $\frac{7}{8}$ times its original quantity in 15 minutes. The half-life of the sample is
 - (1) 5 min

 $(2) 7.5 \min$

(3) 15 min

- (4) 30 min
- Q19. An n.p.n transistor with current gain $\beta = 100$ in common emitter configuration is shown in figure. The output voltage of the amplifier will be

(1) 0.1 V

(2) 1.0 V

(3) 10 V

- (4) 100 Vihongo /// mathongo //
- Q20. A FM Broad cast transmitter, using modulating signal of frequency 20 kHz has a deviation ratio of 10. The Bandwidth required for transmission is:
 - (1) 220 kHz

(2) 180 kHz

(3) 360 kHz

- /// mathongo (4) 440 kHz ngo /// mathongo /// mathongo
- Q21. In an experiment to find acceleration due to gravity (g) using simple pendulum, time period of 0.5 s is measured from time of 100 oscillation with a watch of 1 s resolution. If measured value of length is 10 cm known to 1 mm accuracy. The accuracy in the determination of g is found to be x%. The value of x is
- Q22. A ball is thrown vertically upwards with a velocity of 19.6 m $\rm s^{-1}$ from the top of a tower. The ball strikes the ground after 6 s. The height from the ground up to which the ball can rise will be $(\frac{k}{5})$ m. The value of kis (use $g = 9.8 \text{ m s}^{-2}$)
- Q23. The distance of centre of mass from end A of a one dimensional rod (AB) having mass density $\rho = \rho_0 \left(1 - \frac{x^2}{L^2}\right) \text{ kg m}^{-1}$ and length L (in meter) is $\frac{3L}{\alpha}$ m. The value of α is _____ (where x is the distance form end A) form end A)

- Q24. A string of area of cross-section 4 mm² and length 0. 5 is connected with a rigid body of mass 2 kg. The body is rotated in a vertical circular path of radius 0.5 m. The body acquires a speed of 5 m s⁻¹ at the bottom of the circular path. Strain produced in the string when the body is at the bottom of the circle is 10^{-5} . (Use Young's modulus 10^{11} N m⁻² and g = 10 m s⁻²)
- Q25. At a certain temperature, the degrees of freedom per molecule for gas is 8. The gas performs 150 J of work when it expands under constant pressure. The amount of heat absorbed by the gas will be
- **Q26.** The potential energy of a particle of mass 4 kg in motion along the x-axis is given by $U = 4(1 \cos 4x) J$. The time period of the particle for small oscillation $(\sin \theta \simeq \theta)$ $(\frac{\pi}{K})$ s. The value of K is
- Q27. An electrical bulb rated 220 V, 100 W, is connected in series with another bulb rated 220 V, 60 W. If the voltage across combination is 220 V, the power consumed by the 100 W bulb will be about W. thomas
- **Q28.** For the given circuit the current through battery of 6 V just after closing the switch 'S' will be

Q29. An object 'O' is placed at a distance of 100 cm in front of a concave mirror of radius of curvature 200 cm as shown in the figure. The object starts moving towards the mirror at a speed 2 cm s⁻¹. The position of the image from the mirror after 10 s will be at

- Q30. In an experiment with a convex lens. The plot of the image distance (v') against the object distance (μ') measured from the focus gives a curve $v'\mu'=225$. If all the distances are measured in cm. The magnitude of the focal length of the lens is _____ cm.
- Q31. Which of the following pair is not isoelectronic species?

(Atomic numbers Sm = 62; Er = 68; Yb = 70; Lu = 71; Eu = 63; Tb = 65; Tm = 69)

(1) Sm^{2+} and Er^{3+}

(2) Yb^{2+} and Lu^{3+}

- (3) $\mathrm{Eu^{2+}}$ and $\mathrm{Tb^{4+}}$ athongo /// mothongo (4) $\mathrm{Tb^{2+}}$ and $\mathrm{Tm^{4+}}$ /// mothongo
- Q32. The correct decreasing order for metallic character is
 - (1) Na > Mg > Be > Si > P

(2) P > Si > Be > Mg > Na

(3) Si > P > Be > Na > Mg

(4) $\mathrm{Be} > \mathrm{Na} > \mathrm{Mg} > \mathrm{Si} > \mathrm{P}$

Question Paper MathonGo

Q33. Given below are two statements: One is labelled as	Assertion A and the other is labelled as Reason R Thomas
Assertion A: Zero orbital overlap is an out of phase	e overlap.
Reason R: It results due to different orientation/di	rection of approach of orbitals. Thongo mothongo
In the light of the above statements. Choose the cor-	rect answer from the options given below
(1) Both A and R are true and R is the correct explanation of A	(2) Both A and R are true but R is NOT the correct explanation of A
(3) A is true but R is false	(4) A is false but R is true
Q34. Given below are two statements: One is labelled as	Assertion A and the other is labelled as Reason R
	er if the metal formed is in liquid state than solid state.
	negative side as entropy is higher in liquid state than solid
//. mstate.ongo ///. mathongo ///. mathongo	
In the light of the above statements. Choose the mos	
(1) Both A and R are correct and R is the correct	(2) Both A and R are correct but R is NOT the
explanation of A	correct explanation of A
(3) A is correct but R is not correct	(4) A is not correct but R is correct
Q35. Given below are two statements: One is labelled as	
Assertion A : Permanganate titration are not perform	
Reason R : Chlorine is formed as a consequence of	
In the light of the above statements, choose the corr	
(1) Both A and R are true and R is the correct	(2) Both A and R are true but R is NOT the correct
explanation of A mongo mathongo	explanation of A mathongo mathongo
(3) A is true but R is false	(4) A is false but R is true
Q36. The products obtained during treatment of hard wat	er using Clark's method are mathongo // mothongo
(1) $CaCO_3$ and $MgCO_3$	(2) $\operatorname{Ca}(OH)_2$ and $\operatorname{Mg}(OH)_2$
(3) CaCO ₃ and Mg (OH) ₂ year was mothongo	-
Q37. Statement I: An alloy of lithium and magnesium is u	used to make aircraft plates.
Statement II : The magnesium ions are important fo	The mathemas The mathemas The mathemas
In the light the above statements, choose the correct	
(1) Both Statement I and Statement II are true	(2) Both Statement I and Statement II are false
(3) Statement I is true but Statement II is false	(4) Statement I is false but Statement II is true
Q38. Given below are two statements: One is labelled as	Assertion A and the other is labelled as Reason R
Assertion A: Thin layer chromatography is an adso	
Wa mathongo Wa mathongo Wa-mathongo	a glass plate of suitable size in thin layer chromatography
	ve statements, choose the correct answer from the options
given below	mathons mathons
(1) Both A and R are true and R is the correct	(2) Both A and R are true but R is NOT the correct
explanation of A	explanation of A mathongo mathongo
(3) A is true but R is false	(4) A is false but R is true

JEE Main Previous Year Paper

Question Paper MathonGo

Q39. Arrange the following in increas:	ing order of reactivi	ity towards nitration			
A. p-xylene					
B. bromobenzene mathongo					
C. mesitylene					
D. nitrobenzene E. benzene					
Choose the correct answer from	the options given be	elow			
(1) $C < D < E < A < B$		(2) $D < B < E < A$	< C		
(3) D < C < E < A < B		(4) $C < D < E < B$	< A mathongo		
Q40. White phosphorus reacts with this	onyl chloride to give	ve			
(1) PCl_5 , SO_2 and S_2 Cl_2 O_2 O_3 O_4 O_4 O_5 O_6 O_7 O_8 O_8 O_8 O_9		(2) PCl₃, SO₂ and S₂(4) PCl₅, SO₂ and Cl			
OAT CITIONAL A TIMO CITIONAL	7/4. mathongo				
Q41. Concentrated HNO ₃ reacts with (1) HI, NO ₂ and H ₂ O	Todine to give	(2) HIO ₂ , N ₂ O and H			
(1) HI , NO_2 and H_2O		(4) HIO_4 , N_2O and H	_		
(3) 11103, 1102 and 1120		(4) 11104, 1v ₂ 0 and 11	.20		
Q42. Dinitrogen and dioxygen the main of nitrogen because	n constituents of ai	r do not react with each	other in atmosph	ere to	form oxides
(1) N_2 is unreactive in the condition	tion of atmosphere.	(2) Oxides of nitroger	are unstable.		
(3) Reaction between them can o	occur in the presence	e (4) The reaction is end	lothermic and rec	uire v	very
of a catalyst.		high temperature.			
Q43. Match List-I with List-II					
Tint T	/// mothList-II				
(Complex)		// mathongo // dization)			
A $Ni(CO)_4$	$I = \operatorname{sp}^3$				
B $[\text{Ni}(\text{CN})_4]^{2-}$					
	II en³d²				
- · · · · · · · · · · · · · · · · · · ·	II $\operatorname{sp}^3 \operatorname{d}^2$				
$C \left[\text{Co} \left(\text{CN} \right)_6 \right]^{3-}$	$^{-}$ III $\mathrm{d}^2\mathrm{sp}^3$				
$\operatorname{C} = \left[\operatorname{Co}\left(\operatorname{CN}\right)_{6}\right]^{3-}$ $\operatorname{D} = \left[\operatorname{CoF}_{6}\right]^{3-}$	$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$				
$C = [Co(CN)_6]^{3-}$ $D = [CoF_6]^{3-}$ Choose the correct answer from	III $d^2 sp^3$ IV dsp^2 the options given be	elow mathongo /			
C $\left[\operatorname{Co}\left(\operatorname{CN}\right)_{6}\right]^{3-}$ D $\left[\operatorname{CoF}_{6}\right]^{3-}$ Choose the correct answer from (1) A - IV, B - I, C - III, D -	III $d^2 sp^3$ IV dsp^2 the options given be	elow mathongo (2) A – I, B – IV, C	// mathongo - III, D – II		
$C = [Co(CN)_6]^{3-}$ $D = [CoF_6]^{3-}$ Choose the correct answer from	III $d^2 sp^3$ IV dsp^2 the options given be	elow mathongo /	// mathongo - III, D – II		
C $\left[\operatorname{Co}\left(\operatorname{CN}\right)_{6}\right]^{3-}$ D $\left[\operatorname{CoF}_{6}\right]^{3-}$ Choose the correct answer from (1) A - IV, B - I, C - III, D -	III $d^2 sp^3$ IV dsp^2 the options given be II II mathons	elow (2) A – I, B – IV, C (4) A – IV, B – I, C	mathongo III, D – II II, D – III		
C $[Co(CN)_6]^{3-}$ D $[CoF_6]^{3-}$ Choose the correct answer from (1) A - IV, B - I, C - III, D - (3) A - I, B - IV, C - II, D - I	III $d^2 sp^3$ IV dsp^2 the options given be II II mathons	elow mathongo (2) A – I, B – IV, C	mathongo III, D – II II, D – III		
C $[Co(CN)_6]^{3-}$ D $[CoF_6]^{3-}$ Choose the correct answer from (1) A - IV, B - I, C - III, D - (3) A - I, B - IV, C - II, D - I Q44. The major product in the given respectively.	III $d^2 \operatorname{sp}^3$ IV dsp^2 the options given be II II eaction is $\frac{(1) \operatorname{H}^+, \operatorname{heat}}{(2) \operatorname{HBr}}$	elow (2) A – I, B – IV, C (4) A – IV, B – I, C	mathongo III, D – II III, D – III III, D – III III, D – IIII III, D – IIII		
C $[Co(CN)_6]^{3-}$ D $[CoF_6]^{3-}$ Choose the correct answer from (1) A – IV, B – I, C – III, D – (3) A – I, B – IV, C – II, D – I Q44. The major product in the given recommend of the correct answer from (1) A – IV, B – IV, C – III, D – IIII, D – IIIII – IIIIII	III $d^2 sp^3$ IV dsp^2 the options given be II II mathons eaction is $\frac{(1)H^+, \text{heat}}{(2)HBr}$	elow (2) A – I, B – IV, C (4) A – IV, B – I, C	mathongo III, D – II II, D – III III, D – III III, D – III III mathongo III mathongo III mathongo		

JEE Main Previous Year Paper MathonGo

Question Paper

m(1)hongo /// mathongo	Br mathongo
mathongo /// mathongo	

Find out the m	najor product for th	e above reaction.		

JEE Main Previous Year Paper MathonGo

Question Paper

Q47. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R

Assertion A: Aniline on nitration yields ortho, meta & para nitro derivatives of aniline. Reason R: Nitrating mixture is a strong acidic mixture.

In the light of the above statements, choose the correct answer from the options given below

- (1) Both A and R are true and R is the correct
- explanation of A
- explanation of A
- (4) A is false but R is true
- Q48. Match List I with List II ongo // mathongo // mathongo // mathongo // mathongo

(3) A is true but R is false

(2) Both A and R are true but R is NOT the correct

$$\begin{array}{c} \text{Mathon O-H} \\ \text{Mathon O-H} \\ \text{CH}_2 \\ \text{CH}_2 \\ \end{array}$$

$$O-H$$
 $O-H$
 CH_2
 CH_2

-CH₂ thongo IV Thermoplastic polymer mathongo

Choose the correct answer from the options given below

(1)
$$A - II, B - III, C - IV, D - I$$

(3) $A - III, B - I, C - IV, D - II$

(2)
$$A - III, B - II, C - IV, D - I$$

(4) $A - I, B - III, C - IV, D - II$

Q49. Two statements in respect of drug-enzyme interaction are given below _____ mathongo

Statement I: Action of an enzyme can be blocked only when an inhibitor blocks the active site of the enzyme.

Statement II: An inhibitor can form a strong covalent bond with the enzyme.

In the light of the above statements. Choose the correct answer from the options given below

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is true but Statement II is false
- (4) Statement I is false but Statement II is true
- Q50. The formulas of A and B for the following reaction sequence are

(1)
$$A = C_7 H_{14} O_8, B = C_6 H_{14}$$

(2)
$$A = C_7H_{13}O_7, B = C_7H_{14}O$$

(3)
$$A = C_7H_{12}O_8, B = C_6H_{14}$$

(4)
$$A = C_7H_{14}O_8, B = C_6H_{14}O_6$$

- Q51.2 L of 0.2 MH₂ SO₄ is reacted with 2 L of 0.1 MNaOH solution, the molarity of the resulting product $Na_2 SO_4$ in the solution is millimolar.
- Q52. If the wavelength for an electron emitted from H- atom is 3.3×10^{-10} m, then energy absorbed by the electron in its ground state compared to minimum energy required for its escape from the atom, is times. [Given : $h = 6.626 \times 10^{-34}$ Js, Mass of electron = 9.1×10^{-31}]
- Q53. Among the following the number of state variable is

Internal energy (U)

Volume (V)

Heat (q)

Enthalpy (H)

Q54. At 600 K, 2 mol of NO are mixed with 1 mol of O₂.

 $2 \operatorname{NO}_{(g)} + \operatorname{O}_{2}(g) \rightleftarrows 2 \operatorname{NO}_{2}(g)$

- The reaction occurring as above comes to equilibrium under a total pressure of 1 atm. Analysis of the system shows that 0.6 mol of oxygen are present at equilibrium. The equilibrium constant for the reaction is ...
- Q55. On reaction with stronger oxidizing agent like KIO_4 , hydrogen peroxide oxidizes with the evolution of O_2 . The oxidation number of I in KIO₄ changes to
- Q56. A sample of 0.125 g of an organic compound when analysed by Duma's method yields 22.78 mL of nitrogen gas collected over KOH solution at 280 K and 759 mmHg. The percentage of nitrogen in the given organic compound is ______mathongo
 - (a) The vapour pressure of water at 280 K is 14.2 mmHg
 - (b) $R = 0.082 L atm K^{-1} mol^{-1}$ mathongo /// mathongo /// mathongo ///

Question Paper

Q57. Metal M crystallizes into a FCC lattice with the edge length of $4.0 \times 10^{-8}\,$ cm. The atomic mass of the metal is g/mol.

(Use :
$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$
, density of metal, $M = 9.03 \text{ g cm}^{-3}$) was mathongo

Q58. A gaseous mixture of two substances A and B, under a total pressure of 0.8 atm is in equilibrium with an ideal liquid solution. The mole fraction of substance A is 0.5 in the vapour phase and 0.2 in the liquid phase. The vapour pressure of pure liquid A is ____atm.(Nearest integer)

Q59. For a reaction, given below is the graph of lnk vs $\frac{1}{T}$. The activation energy for the reaction is equal to ____ cal mol^{-1} . (Given : $R = 2 \text{ cal } K^{-1} \text{ mol}^{-1}$)

Q60. Among the following the number of curves not in accordance with Freundlich adsorption isotherm is

Q61. Let $S=\left\{x\in[-6,3]-\{-2,2\}: \frac{|x+3|-1}{|x|-2}\geq 0\right\}$ and $T=\left\{x\in Z: x^2-7|x|+9\leq 0\right\}$. Then the number of elements in $S\cap T$ is although mathons.

MathonGo

Question Paper

m(1) 7ongo /// mathongo /// mathongo /// mathongo /// mathongo

(3) 4

Q62. Let α, β be the roots of the equation $x^2 - \sqrt{2}x + \sqrt{6} = 0$ and $\frac{1}{\alpha^2} + 1, \frac{1}{\beta^2} + 1$ be the roots of the equation $x^2 + ax + b = 0$. Then the roots of the equation $x^2 - (a+b-2)x + (a+b+2) = 0$ are :

- (2) real and both negative (1) non-real complex numbers
- (4) real and exactly one of them is positive (3) real and both positive

Q63. Let the tangents at two points A and B on the circle $x^2 + y^2 - 4x + 3 = 0$ meet at origin O(0,0). Then the area of the triangle of *OAB* is

- $(1) \frac{3\sqrt{3}}{2}$
- (3) $\frac{3}{2\sqrt{3}}$ $\frac{3}{2\sqrt{3}}$ $\frac{3}{2\sqrt{3}}$ mathongo $\frac{3}{2\sqrt{3$

Q64. Let the hyperbola $H: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ pass through the point $(2\sqrt{2}, -2\sqrt{2})$. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?

- $(1) \left(2\sqrt{3}, 3\sqrt{2}\right)$ $(3) \left(\sqrt{3}, -\sqrt{6}\right)$ $(2) \left(3\sqrt{3}, -6\sqrt{2}\right)$ $(4) \left(3\sqrt{6}, 6\sqrt{2}\right)$

Q65.Lethongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

p : Ramesh listens to music.

q: Ramesh is out of his village /// mothongo /// mothongo /// mothongo /// mothongo

r: It is Sunday

equal to

s: It is Saturday mothongo /// mothongo /// mothongo /// mothongo

Then the statement "Ramesh listens to music only if he is in his village and it is Sunday or Saturday" can be

- $(1) ((\neg q) \land (r \lor s)) \Rightarrow p$ $(2) (q \wedge (r \vee s)) \Rightarrow p$
- $(3) \ p \Rightarrow (q \land (r \lor s)) \tag{4)} \ p \Rightarrow ((\lnot q) \land (r \lor s))$
- **Q66.** A horizontal park is in the shape of a triangle OAB with AB = 16. A vertical lamp post OP is erected at the point O such that $\angle PAO = \angle PBO = 15^{\circ}$ and $\angle PCO = 45^{\circ}$, where C is the midpoint of AB. Then $(OP)^2$ is
 - (1) $\frac{32}{\sqrt{3}} \left(\sqrt{3} 1 \right)$ mathongo /// mathongo (2) $\frac{32}{\sqrt{3}} \left(2 \sqrt{3} \right)$ /// mathongo (4) $\frac{16}{\sqrt{3}} \left(\sqrt{3} 1 \right)$
 - $(4) \frac{\frac{16}{\sqrt{3}}(2-\sqrt{3})}{\sqrt{3}}$ mathongo /// mathongo

Q67. Let A and B be any two 3×3 symmetric and skew symmetric matrices respectively. Then which of the following is **NOT** true?

- (1) $A^4 B^4$ is a symmetric matrix (2) AB - BA is a symmetric matrix
- (3) $B^5 A^5$ is a skew-symmetric matrix (4) AB + BA is a skew-symmetric matrix

Q68. Let $f(x) = ax^2 + bx + c$ be such that f(1) = 3, $f(-2) = \lambda$ and f(3) = 4. If f(0)+f(1)+f(-2)+f(3)=14, then λ is equal to wathough multiplication multiplication multiplication multiplication and multiplication mult Question Paper

MathonGo

- 4 n(1) -4ngo /// mathongo /// mathongo (2) $\frac{13}{2}$ nathongo /// mathongo /// mathongo

- **Q69.** The function f:R o R defined by $f(x)=\lim_{n o\infty}rac{\cos(2\pi x)-x^{2n}\sin(x-1)}{1+x^{2n+1}-x^{2n}}$ is continuous for all x in

 - (1) $R \{-1\}$ (3) $R \{1\}$ (2) $R \{-1, 1\}$ (4) $R \{0\}$

- Q70. Let $x(t)=2\sqrt{2}\cos t\sqrt{\sin 2t}$ and $y(t)=2\sqrt{2}\sin t\sqrt{\sin 2t}$, $t\in \left(0,\frac{\pi}{2}\right)$. Then $\frac{1+\left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{2}}$ at $t=\frac{\pi}{4}$ is equal to (2) $\frac{-2\sqrt{2}}{3}$ (3) $\frac{1}{3}$ mathongo (2) $\frac{2}{3}$ mathongo (4) $\frac{-2}{2}$ mathongo (4) $\frac{-2}{3}$

- $(4) \frac{-2}{3}$
- **Q71.** The function $f(x) = xe^{x(1-x)}, x \in R$, is

- (1) increasing in $\left(-\frac{1}{2},1\right)$ (2) decreasing in $\left(\frac{1}{2},2\right)$ (3) increasing in $\left(-1,-\frac{1}{2}\right)$ (4) decreasing in $\left(-\frac{1}{2},\frac{1}{2}\right)$ (5) mathons
- Q72. The sum of the absolute maximum and absolute minimum values of the function $f(x) = \tan^{-1}(\sin x \cos x)$ in the interval $[0, \pi]$ is

 - $(3) \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \frac{\pi}{4}$
- mathongo mathongo (2) $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right) \frac{\pi}{4}$ mathongo (4) $\frac{-\pi}{12}$
- Q73. Let $I_n(x)=\int_0^x \frac{1}{(t^2+5)^n} dt, n=1,2,3,\ldots$ Then

 - $(1) 50I_6 9I_5 = xI_5'$ $(2) 50I_6 0I_5 = I'$ $(4) 50I_6 11I_5 = I_5'$

- **Q74.** The area enclosed by the curves $y = \log_e \left(x + e^2 \right)$, $x = \log_e \left(\frac{2}{y} \right)$ and $x = \log_e 2$, above the line y = 1 is
 - (1) $2+e-\log_e 2$ (2) $1+e-\log_e 2$ (3) $e-\log_e 2$ (4) $1+\log_e 2$ (4) $1+\log_e 2$ $(1)\ 2 + e - \log_e 2$

- Q75. Let y = y(x) be the solution curve of the differential equation $\frac{dy}{dx} + \frac{1}{x^2 1}y = \left(\frac{x 1}{x + 1}\right)^{\frac{1}{2}}$, x > 1 passing through the point $\left(2,\sqrt{\frac{1}{3}}\right)$. Then $\sqrt{7}y(8)$ is equal to mathongo /// mathongo /// mathongo /// mathongo

 $(3) 12 - 2 \log_e 3$

- (4) $19 6\log_e 3$ /// mathongo /// mathongo
- **Q76.** The differential equation of the family of circles passing through the points (0,2) and (0,-2) is

 - $(1) 2xy \frac{dy}{dx} + (x^2 y^2 + 4) = 0$ $(2) 2xy \frac{dy}{dx} + (x^2 + y^2 4) = 0$ $(3) 2xy \frac{dy}{dx} + (y^2 x^2 + 4) = 0$ $(4) 2xy \frac{dy}{dx} (x^2 y^2 + 4) = 0$

- Q77. Let S be the set of all $a \in R$ for which the angle between the vectors $\overrightarrow{u} = a(\log_e b)\hat{i} 6\hat{j} + 3\hat{k}$ and
 - $\overrightarrow{v} = (\log_e b)\hat{i} + 2\hat{j} + 2a(\log_e b)\hat{k}, (b>1)$ is acute. Then S is equal to (1) $\left(-\infty, -\frac{4}{3}\right)$ mathons (2) Φ

- (3) $\left(-\frac{4}{3},0\right)$ (4) $\left(\frac{12}{7},\infty\right)$ mathongo /// mathongo /// mathongo /// mathongo

Question Paper

Q78. Let the lines $\frac{x-1}{\lambda} = \frac{y-2}{1} = \frac{z-3}{2}$ and $\frac{x+26}{-2} = \frac{y+18}{3} = \frac{z+28}{\lambda}$ be coplanar and P be the plane containing these two lines. Then which of the following points does NOT lies on P?

- (1) (0,-2,-2) mathong /// mathong (2) (-5,0,-1) /// mathong /// mathong
- (3) (3, -1, 0)

(4)(0,4,5)

Q79. A plane P is parallel to two lines whose direction ratios are -2, 1, -3, and -1, 2, -2 and it contains the point (2,2,-2). Let P intersect the co-ordinate axes at the points A, B, C making the intercepts α,β,γ . If V is the volume of the tetrahedron OABC, where O is the origin and $p = \alpha + \beta + \gamma$, then the ordered pair (V, p) is equal to

- (1) (48,-13) // mathongo // mathongo // mathongo // mathongo

(3)(48,11)

(4)(24,-5)

Q80. Let A and B be two events such that $P(B \mid A) = \frac{2}{5}$, $P(A \mid B) = \frac{1}{7}$ and $P(A \cap B) = \frac{1}{9}$. Consider $(S1)P(A'\cup B)=\tfrac{5}{6},$ $(S2)P(A'\cap B')=rac{1}{18}$. Then /// mathongo /// mathongo /// mathongo /// mathongo

(1) Both (S1) and (S2) are true

- (2) Both (S1) and (S2) are false
- (3) Only (S1) is true (4) Only (S2) is true (4) Mathonso (4) Only (S2) is true

Q81. Let $z=a+ib,\ b\neq 0$ be complex numbers satisfying $z^2=\bar{z}\cdot 2^{1-|z|}$. Then the least value of $n\in N$, such that $z^n = (z+1)^n$, is equal to .

Q82. A class contains b boys and g girls. If the number of ways of selecting 3 boys and 2 girls from the class is 168, then b + 3q is equal to

Q83. If $\frac{6}{3^{12}} + \frac{10}{3^{11}} + \frac{20}{3^{10}} + \frac{40}{3^9} + \dots + \frac{10240}{3} = 2^n \cdot m$, where m is odd, then m. n is equal to ______.

Q84. Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}} + \beta x\right)^4$, $(1 - 3\beta x)^2$ and $\left(1 - \frac{\beta}{2}x\right)^6$, $\beta > 0$, respectively form the first three terms of an A.P. If d is the common difference of this A.P., then $50 - \frac{2d}{\beta^2}$ is equal to

Q85. If $1 + (2 + {}^{49}C_1 + {}^{49}C_2 + \dots + {}^{49}C_{49})({}^{50}C_2 + {}^{50}C_4 + \dots + {}^{50}C_{50})$ is equal to 2^n . m, where m is odd, then n+m is equal to .

Q86. Let $S = \left[-\pi, \frac{\pi}{2}\right) - \left\{-\frac{\pi}{2}, -\frac{\pi}{4}, -\frac{3\pi}{4}, \frac{\pi}{4}\right\}$. Then the number of elements in the set $A = \left\{ \theta \in \mathbf{S} : \tan \theta \left(1 + \sqrt{5} \tan(2\theta) \right) = \sqrt{5} - \tan(2\theta) \right\} \text{ is } \underline{\hspace{1cm}}.$

Q87. Two tangent lines l_1 and l_2 are drawn from the point (2,0) to the parabola $2y^2=-x$. If the lines l_1 and l_2 are also tangent to the circle $(x-5)^2+y^2=r$, then $17r^2$ is equal to

Q88. Let the tangents at the points P and Q on the ellipse $\frac{x^2}{2} + \frac{y^2}{4} = 1$ meet at the point $R\left(\sqrt{2}, 2\sqrt{2} - 2\right)$. If S is the focus of the ellipse on its negative major axis, then SP^2+SQ^2 is equal to

Q89. The value of the integral $\int_0^{\frac{\pi}{2}} 60 \frac{\sin(6x)}{\sin x} dx$ is equal to /// mothongo /// mothongo

JEE Main 2022 (28 Jul Shift 2) Question Paper

JEE Main Previous Year Paper MathonGo

Q90. A bag contains 4 white and 6 black balls. Three balls are drawn at random from the bag. Let X be the number of white balls, among the drawn balls. If σ^2 is the variance of X, then $100\sigma^2$ is equal to

ANSWER	KEYS	morinor go	///.	marinango	///.	nengo	7%.	muliu go	///.	go
1. (4) nathor		3. (4)	111.	4. (1)	5. (3)	6. (4	.) ///	7. (3) ₀₀	111.	8. (3) hongo
9. (2)	10. (1)	11. (3)		12. (3)	13. (3)	14. (15. (4)		16. (4)
17. (3) athor	18. (1)	mat 19. (2)		20. (4)	21. (5) at	0022. ((392)	23. (8)		24. (30)
25. (750)	26. (2)	27. (14)		28. (1)	29. (400)	30. ((15)	31. (4)		32. (1)
33. (1)	34. (1)	35. (1)		36. (3)	37. (2)	38. ((1)	39. (2)		40. (2)
41. (3) athor	42. (4)	43. (2)		44. (3)	45. (4)	46. ((3)	47. (1)		48. (2)
49. (4)	50. (1)	51. (25)		52. (2)	53. (3)	54. ((2)	55. (5)		56. (22)
57. (87) thor	58. (2)	59. (8)		60. (3) ongo	61. (4) 1 ath	62. ((2)//	63. (2)		64. (2) ongo
65. (4)	66. (2)	67. (3)		68. (4)	69. (2)	70. ((4)	71. (1)		72. (3)
73. (1)	74. (2)	75. (4)		76. (1)	77. (2)	78. (79. (2)		80. (1)
81. (6) 89. (104)	82. (17) 90. (56)	83. (12) mathongo		84. (57)	85. (99)	86. ((5)	87. (9)		88. (13)