Q1. Match List I with List II.

- (A) thong Torque mathongo
- Nms⁻¹ matho(I)

Stress (B)

- Ikg⁻¹ (II)
- (C) Latent Heat
- matho(III) m_{Nm}ongo
- (D)

 Nm^{-2} (IV)

Choose the correct answer from the options given below:

(1) A - III, B - II, C - I, D - IV

- (2) A III, B IV, C II, D I
- (3) A IV, B I, C III, D II // mathongo (4) A II, B III, C I, D IVongo // mathongo
- Q2. A juggler throws balls vertically upwards with same initial velocity in air. When the first ball reaches its highest position, he throws the next ball. Assuming the juggler throws n balls per second, the maximum height the balls can reach is
- mathongo mathongo mathongo mathongo mathongo mathongo
- (3) 2gn

- Q3. A ball is released from a height h. If t_1 and t_2 be the time required to complete first half and second half of the distance respectively. Then, choose the correct relation between t_1 and t_2 .
 - (1) $t_1 = \sqrt{2} t_2$

- (2) $t_1 = \sqrt{2} 1t_2$
- (3) $t_2 = \sqrt{2} + 1t_1$ mathongo /// mathongo
 - $(4) \ t_2 = \sqrt{2} 1t_1$
- Q4. Two bodies of masses $m_1 = 5$ kg and $m_2 = 3$ kg are connected by a light string going over a smooth light pulley on a smooth inclined plane as shown in the figure. The system is at rest. The force exerted by the inclined plane on the body of mass m_1 will be : [Take $g = 10 \text{ m s}^{-2}$]

(1) 30 N

mathongo (2) 40 N thongo /// mathongo /// mathongo

(3) 50 N

- (4) 60 N
- Q5. If momentum of a body is increased by 20%, then its kinetic energy increases by :
 - (1) 36%

(2) 40%

(3)44%

- **Q6.** The torque of a force $5\hat{i} + 3\hat{j} 7\hat{k}$ about the origin is τ . If the force acts on a particle whose position vector is $2\hat{i} + 2\hat{j} + \hat{k}$, then the value of τ will be
 - (1) $11\hat{i} + 19\hat{j} 4\hat{k}$ mathongo /// mathongo (2) $-11\hat{i} + 9\hat{j} 16\hat{k}$ /// mathongo /// mathongo

(3) $-17\hat{i} + 19\hat{j} - 4\hat{k}$

- Q7. An object of mass 1 kg is taken to a height from the surface of earth which is equal to three times the radius of earth. The gain in potential energy of the object will be [If, g = 10 m s⁻² and radius of earth = 6400 km]

///. mathongo ///. mathongo (2) 24MJ);thongo ///. mathongo ///. mathongo (1) 48MI

(3) 36MI

Q8. A thermodynamic system is taken from an original state D to an intermediate state E by the linear process shown in the figure. Its volume is then reduced to the original volume from E to F by an isobaric process. The total work done by the gas from D to E to F will be

// mathongo /// mathongo (2) 450 Jihongo /// mathongo /// mathongo

(1) -450 J (3) 900 I

(4) 1350 I

Q9. The root mean square speed of smoke particles of mass 5×10^{-17} kg in their Brownian motion in air at NTP is approximately.

[Given $k = 1.38 \times 10^{-23}$ J K⁻¹] mathongo /// mathongo ///

 $(1) 60 \text{ mm s}^{-1}$

(3) 150 mm s⁻¹ mathongo /// mathongo (4) 36 mm s⁻¹ /// mathongo /// mathongo

Q10. Two identical metallic spheres A and B when placed at certain distance in air repel each other with a force of F . Another identical uncharged sphere C is first placed in contact with A and then in contact with B and finally placed at midpoint between spheres A and B. The force experienced by sphere C will be:

(3) F

(4) 2F

Q11. Two identical thin metal plates has charge q_1 and q_2 respectively such that $q_1 > q_2$. The plates were brought close to each other to form a parallel plate capacitor of capacitance C. The potential difference between them is

mathongo (2) $\frac{q_1 \cdot q_2}{2q_1 \cdot q_2}$ mathongo (3) mathongo (4) $\frac{2q_1 \cdot q_2}{2q_1 \cdot q_2}$

Q12. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Alloys such as constantan and manganin are used in making standard resistance coils.

Reason R: Constantan and manganin have very small value of temperature coefficient of resistance. In the light of the above statements, choose the correct answer from the options given below.

explanation of A

(1) Both A and R are true and R is the correct (2) Both A and R are true but R is NOT the correct explanation of A.

(3) A is true but R is false. (4) A is false but R is true.

Q13. A 1 m long wire is broken into two unequal parts X and Y. The X part of the wire is stretched into another wire W. Length of W is twice the length of X and the resistance of W is twice that of Y. Find the ratio of length

JEE Main Previous Year Paper

Question Paper

MathonGo

of X and Y.

(1) 1:4

(3) 4:1

- mathongo /// mathongo /// mathongo /// mathongo

Q14. The vertical component of the earth's magnetic field is 6×10^{-5} T at any place where the angle of dip is 37°. The earth's resultant magnetic field at that place will be (Given $\tan 37^{\circ} = \frac{3}{4}$)

(1) 8×10^{-5} T

(2) 6×10^{-5} T

 $(3) 5 \times 10^{-4} \text{ T}$

(4) 1×10⁻⁴ T // mathongo // mathongo

Q15. A wire X of length 50 cm carrying a current of 2 A is placed parallel to a long wire Y of length 5 m. The wire Y carries a current of 3 A. The distance between two wires is 5 cm and currents flow in the same direction. The force acting on the wire Y is:

- (1) 1.2×10^{-5} N directed towards wire X.
- (2) 1.2×10^{-4} N directed away from wire X.
- (3) 1.2×10^{-4} N directed towards wire X.
- (4) 2.4×10^{-5} N directed towards wire X.

Q16. A circuit element X when connected to an AC supply of peak voltage 100 V gives a peak current of 5 A which is in phase with the voltage. A second element Y when connected to the same AC supply also gives the same value of peak current which lags behind the voltage by $\frac{\pi}{2}$. If X and Y are connected in series to the same supply, what will be the rms value of the current in ampere?

(1) $\frac{10}{\sqrt{2}}$ (2) $\frac{5}{\sqrt{2}}$ (3) $5\sqrt{2}$ (4) $\frac{5}{2}$

Q17. Light enters from air into a given medium at an angle of 45° with interface of the air-medium surface. After refraction, the light ray is deviated through an angle of 15° from its original direction. The refractive index of the medium is:

(1) 1.732

mathongo (2) 1.333hongo /// mathongo ///

(3) 1.414

Q18. An unpolarised light beam of intensity $2I_0$ is passed through a polaroid P and then through another polaroid Q which is oriented in such a way that its passing axis makes an angle of 30° relative to that of P. The intensity of the emergent light is

(1) $\frac{I_0}{I_0}$

- ngo ///. mathongo ///. mathongo $\frac{(2)\frac{I_0}{2}}{(4)\frac{3I_0}{2}}$ athongo ///. mathongo ///.

Q19. An α particle and a proton are accelerated from rest to	through the same potential difference. The ratio of linear
momenta acquired by above two particals will be:	
///. $n(1)\sqrt{2}$:10 /// mathongo ///. mathongo	(2) $2\sqrt{2}$: 1 _{hongo} /// mathongo /// mathong
(3) $4\sqrt{2}$: 1	(4) 8: 1
Q20. Read the following statements:	
(A) Volume of the nucleus is directly proportional to	
(B) Volume of the nucleus is independent of mass nu	imber. mathongo /// mathongo /// mathong
(C) Density of the nucleus is directly proportional to	the mass number.
(D) Density of the nucleus is directly proportional to	the cube root of the mass number. We mothone
(E) Density of the nucleus is independent of the mass	s number.
Choose the correct option from the following options	s.//. mathongo ///. mathongo ///. mathong
(1) (A) and (D) only.	(2) (A) and (E) only.
(3) (B) and (E) only. mathongo	(4) (A) and (C) only mathong mathong
Q21. A tube of length 50 cm is filled completely with an	incompressible liquid of mass 250 g and closed at both
ends. The tube is then rotated in horizontal plane abo	
$x\sqrt{F}$ rad s ⁻¹ . If F be the force exerted by the liquid	
/// mathongo /// mathongo /// mathongo	/// mathongo /// mathongo /// mathong
Q22. A metal wire of length 0.5 m and cross-sectional a	rea 10^{-4} m ² has breaking stress 5×10^{8} N m ⁻² . A
/// mathongo /// mathongo /// mathongo	and is rotating in a horizontal circle. The maximum linear
velocity of block will be m s ⁻¹ .	
Q23. The velocity of a small ball of mass 0.3 g and do	ensity 8 g cc ⁻¹ when dropped in a container filled wit
	e density of glycerine is 1.3 g cc ⁻¹ , then the value of
viscous force acting on the ball will be $x \times 10^{-4}$ N,	
[use $g = 10 \text{ m s}^{-2}$]	77. Hathong
Q24. Nearly 10% of the power of a 110 W light bulb is of	converted to visible radiation. The change in average
	from the bulb to a distance of 5 m is $a \times 10^{-2}$ W m ⁻² .
	/// mathongo /// mathongo /// mathong
Q25. The metallic bob of simple pendulum has the relative	e density 5. The time period of this pendulum is 10. s. If
the metallic bob is immersed in water, then the new t	We mathende We mathende We mathend
the metanic 600 is inimersed in water, then the new t	The period becomes $3\sqrt{x}$ s. The value of x will be
///. mathongo ///. mathongo	
Q26. The speed of a transverse wave passing through a str	ing of length 50 cm and mass 10 g is 60 m s ⁻¹ . The
area of cross-section of the wire is 2.0 mm ² and it	s Young's modulus is 1.2×10^{11} N m ⁻² . The extension
of the wire over its natural length due to its tension v	vill be $x \times 10^{-5}$ m. The value of x is
Q27. A capacitor of capacitance 500 μ F is charged comp	letaly using a de supply of 100. V. It is now connected to
	reuit. The maximum current in LC circuit will be A
	mathongo // mathongo // mathongo
Q28. Two radioactive materials A and B have decay consta	ants 25λ and 16λ respectively. If initially they have the
same number of nuclei, then the ratio of the number	of nuclei of B to that of A will be "e" after a time $\frac{1}{a\lambda}$. The
	mathongo wa mathongo wa mathong

n value of a is ///. mathongo /// mathongo /// mathongo /// mathongo

Q29. A 8V Zener diode along with a series resistance R is connected across a 20 V supply (as shown in the figure). If the maximum Zener current is 25 mA, then the minimum value of R will be Ω .

- Q30. A modulating signal 2sin6. $28 \times 10^6 t$ is added to the carrier signal $4\sin 12.56 \times 10^9 t$ for amplitude modulation. The combined signal is passed through a non-linear square law device. The output is then passed through a band pass filter. The bandwidth of the output signal of band pass filter will be MHz.
- Q31. Consider the reaction

 $4HNO_3l + 3KCls \rightarrow Cl_2g + NOClg + 2H_2Og + 3KNO_3s$

The amount of HNO₃ required to produce 110.0 g of KNO₃ is

(Given: Atomic masses of H, O, N and K are 1, 16, 14 and 39, respectively.)

(1) 32.2 g

(2) 69.4 g

- n(3) 91.5 g // mathongo // mathongo (4) 162.5 ng ngo // mathongo // mathongo

Q32. Cs +
$$O_2g \rightarrow CO_2g + 400$$
 kJ
Cs + $\frac{1}{2}O_2g \rightarrow COg + 100$ kJ

When coal of purity 60% is allowed to burn in presence of insufficient oxygen, 60% of carbon is converted into 'CO' and the remaining is converted into 'CO₂'.

The heat generated when 0.6 kg of coal is burnt is

(1) 1600 kJ

(2) 3200 kJ

(3) 4400 kJ

- (4) 6600 kJ
- Q33. Given below are the quantum numbers for 4 electrons.

A.
$$n = 3, l = 2, m_1 = 1, m_s = +\frac{1}{2}$$

B.
$$n = 4, l = 1, m_1 = 0, m_s = +\frac{f}{2}$$

C.
$$n = 4, l = 2, m_1 = -2, m_s = -\frac{1}{2}$$

D. n = 3, l = 1,
$$m_1 = -1$$
, $m_s = +\frac{1}{2}$

The correct order of increasing energy is

(1) D < B < A < C

(2) D < A < B < C

(3) B < D < A < C

- (4) B < D < C < A
- Q34.200 mL of 0.01MHCl is mixed with 400 mL of 0.01MH₂SO₄. The pH of the mixture is
 - (1) 1.14

(2) 1.78 thongo /// mathongo ///

(3)2.34

- (4) 3.02
- Q35. A compound 'X' is a weak acid and it exhibits colour change at pH close to the equivalence point during neutralization of NaOH with CH₃COOH. Compound 'X' exists in ionized form in basic medium. The compound 'X' isongo ///. mathongo ///. mathongo ///. mathongo

Question Paper

MathonGo

In the light of the above statement, choose the most appropriate answer from the options given below.

MathonGo

Question Paper

- (1) Both Statement I and Statement II are correct
- (3) Statement I is correct but Statement II is incorrect.
- (2) Both Statement I and Statement II are incorrect.
- (4) Statement I is incorrect but Statement II is

Q41. Given below are the critical temperatures of some of the gases:

Gas	Critical temperature K								
He CH ₄	5.2 190 mathongo ///. mathongo								
CO ₂ NH ₃	304.2 405.5 /// mathongo								
The gas showing least adsorption on a definite amount of charcoal is									

(2) CH₄ athongo $(3) CO_2$ (4) NH₃

Q42. In liquation process used for tin Sn, the metal

- (1) is reacted with acid (2) is dissolved in water
- (3) is brought to molten form which is made to flow (4) is fused with NaOH, on a slope

Q43. Dinitrogen is a robust compound, but reacts at hig altitude to form oxides. The oxide of nitrogen the can damage plant leaves and retard photosynthes is

- (1) NO $(2) NO_3$
- mathongo /// mathongo (4) NO₂athongo /// mathongo // $(3) NO_2$

Q44. Which of the following 3d - metal ion will give the lowest enthalpy of hydration $\Delta_{hyd}H$ when dissolved in water?

- $(1) Cr^{2+}$
- mathongo (4) Co²⁺thongo /// mathongo (3) Fe^{2+}

Q45. Octahedral complexes of copper II undergo structural distortion (Jahn-Teller). Which one of the given copper II complexes will show the maximum structural distortion?

(en-ethylenediamine; H₂N - CH₂ - CH₂ - NH₂)

- (2) CuenH₂O₄SO₄ mathongo mathongo $(1) CuH_2O_6SO_4$
- (4) trans-Cuen₂Cl₂ (3) cis-Cuen₂Cl₂

Q46. Compound 'A' undergoes following sequence of reactions to give compound 'B'. The correct structure and chirality of compound 'B' is [where Et is -C₂H₅]

Compound 'A' mathongo mathongo mathongo mathongo

JEE Main Previous Year Paper

Question Paper MathonGo

- - , Chiral
- , Chiral
- , Achiral (4)
- Q47. When enthanol is heated with conc. H₂SO₄, a gas is produced. The compound formed, when this gas is treated with cold dilute aqueous solution of Baeyer's reagent, is mothon of
 - (1) Formaldehyde

(2) Formic acid

(3) Glycol

(4) Ethanoic acid

Q48. The Hinsberg reagent is

- (4)
- Q49. Which of the following is NOT a natural polymer?
 - (1) Protein

(2) Starch

(3) Rubber

- (4) Rayon
- **Q50.** Given below are two statements. One is labelled as Assertion A and the other is labelled as Reason R. Assertion A : Amylose is insoluble in water.

Reason R: Amylose is a long linear molecule with more than 200 glucose units. In the light of the above statements, choose the correct answer from the options given below.

- (1) Both A and R are correct and R is the correct (2) Both A and R are correct and R is NOT the explanation of A.
 - correct explanation of A.
- (3) A is correct but R is not correct. (4) A is not correct but R is correct.
- Q51. A 1.84 mg sample of polyhydric alcoholic compound 'X' of molar mass 92.0 g / mol gave 1.344 mL of H₂ gas at STP. The number of alcoholic hydrogen present in compound 'X' is
- Q52. Consider, PF₅, BrF₅, PCl₃, SF₆, ICl₄, ClF₃ and IF₅

Amongst the above molecule(s) ion(s), the number of molecule(s)/ion(s) having sp³d² hybridisation is

Q53. 'x' g of molecular oxygen O₂ is mixed with 200 g of neon Ne. The total pressure of the nonreactive mixture of O₂ and Ne in the cylinder is 25 bar. The partial pressure of Ne is 20 bar at the same temperature and volume.

The value of 'x' is mathongo /// mathongo

[Given: Molar mass of $O_2 = 32$ g mol⁻¹. Molar mass of Ne = 20 g mol⁻¹]

Question Paper

JEE Main Previous Year Paper MathonGo

Q54.1.80 g of solute A was dissolved in 62.5 cm³ of ethanol and freezing point of the solution was found to be 155.1 K. The molar mass of solute A is gmol⁻¹. [Given: Freezing point of ethanol is 156.0 K. Density of ethanol is 0.80 g cm⁻³. Freezing point depression constant of ethanol is 2.00 K kg mol⁻¹]

- Q55. For a cell, CusCu²⁺0.001M) Ag⁺0.01MAgsthe cell potential is found to be 0.43 V at 298 K. The magnitude of standard electrode potential for Cu^{2+} | Cu is $\underline{} \times 10^{-2}$ V Given: $E_{Ag^+/Ag}^0 = 0.80 \text{ V}$ and $\frac{2.303\text{RT}}{F} = 0.06 \text{ V}$
- Q56. Assuming 1µg of trace radioactive element X with a half life of 30 years is absorbed by a growing tree. The amount of X remaining in the tree after 100 years is $\times 10^{-1} \mu g$. [Given: $\ln 10 = 2.303$; $\log 2 = 0.30$]
- Q57. Consider the following sulphure based oxoacids. H₂SO₃, H₂SO₄, H₂S₂O₈ and H₂S₂O₇. Amongst these oxoacids, the number of those with peroxo 0 - Obond is mathong mathong mathong mathong
- Q58. Sum of oxidation state (magnitude) and coordination number of cobalt in NaCobpyCl₄ is

- Q59. The number of stereoisomers formed in a reaction of \pm PhC = OCOHCNPh with HCN is
- Q60. The number of chlorine atoms in bithionol is ongo // mathongo // mathongo // mathongo
- **Q61.** If $z \neq 0$ be a complex number such that $z \frac{1}{z} = 2$, then the maximum value of z is
 - $(1) \sqrt{2}$

(2) 1

- $(3) \sqrt{2} 1$
- /// mathongo /// mathongo (4) $\sqrt{2} + 1$
- Q62. Let S = z = x + iy: $z 1 + i \ge z$, z < 2, z + i = z 1. Then the set of all values of x, for which $w = 2x + iy \in S$ for some $y \in \mathbb{R}$, is mathongo /// mathongo /// mathongo /// mathongo /// $(1) - \sqrt{2}, \frac{1}{2\sqrt{2}}$ // $(2) - \frac{1}{\sqrt{2}}, \frac{1}{4}$ // $(3) - \sqrt{2}, \frac{1}{2}$ // mathongo /// mathong

- **Q63.** Let $a_{n_{n=0}}^{\infty}$ be a sequence such that $a_0 = a_1 = 0$ and $a_{n+2} = 3a_{n+1} 2a_n + 1$, $\forall n \ge 0$. Then $a_{25}a_{23}$ - $2a_{25}a_{22}$ - $2a_{23}a_{24}$ + $4a_{22}a_{24}$ is equal to

- - (1) 22! 21!

- (2) 22! 221!
- (3) 21! 220! mathongo mathongo (4) 21! 20! mathongo mathongo mathongo

Q65. The number of elements in the set

S =
$$x \in \mathbb{R}$$
: $2\cos\frac{x^2 + x}{6} = 4^x + 4^{-x}$ is mathongo /// mathongo /// mathongo ///

- n(3) 0 ongo /// mathongo /// mathongo /// mathongo /// mathongo

Question Paper

JEE Main Previous Year Paper MathonGo

Q66. Let m_1 , m_2 be the slopes of two adjacent sides of a square of side a such that $a^2 + 11a + 3$ $m_1^2 + m_2^2 = 220$. If one vertex of the square is $10\cos\alpha - \sin\alpha$, $10\sin\alpha + \cos\alpha$, where $\alpha \in 0$, $\frac{\pi}{2}$ and the equation of one diagonal is $\cos \alpha - \sin \alpha x + \sin \alpha + \cos \alpha y = 10$, then $72\sin^4 \alpha + \cos^4 \alpha + \alpha^2 - 3\alpha + 13$ is equal to mothongo

(1)119

(2)128

- (3) 145
- mathongo /// mathongo (4) 155 athongo /// mathongo /// mathongo

Q67. Let $A\alpha$, -2, $B\alpha$, 6 and $C\frac{\alpha}{4}$, -2 be vertices of a $\triangle ABC$. If 5, $\frac{\alpha}{4}$ is the circumcentre of $\triangle ABC$, then which of the following is NOT correct about $\triangle ABC$ following is NOT correct about ΔABC

(1) ares is 24

- (2) perimeter is 25
- (3) circumradius is 5 thongo // mothongo (4) inradius is 2 // mothongo // mothongo

Q68. The statement $p \Rightarrow q \lor p \Rightarrow r$ is NOT equivalent to:

(1) $p \land \sim r \Rightarrow q$

 $(2) \sim q \Rightarrow \sim r \vee p$

 $(3) p \Rightarrow q \lor r$

(4) $p \land \sim q \Rightarrow r$

Q69. Which of the following matrices can NOT be obtained from the matrix by a single elementary row operation?

- (1) 0 1mathbn.10
- (2) 1 -1 //. mathongo ///. mathongo /// -1nc2nongo ///. mathongo ///. mathongo
- (3) -1 2 -2 7

(4) -1 2 mathongo ///. mathongo ///. mathongo

Q70. If the system of equations

$$x + y + z = 6$$

$$2x + 5y + \alpha z = \beta$$

$$x + 2y + 3z = 14$$

has infinitely many solutions, then $\alpha + \beta$ is equal to

(1)8

- mathongo /// mathongo (2) 36
 (4) 48 mathongo /// mathongo /// mathongo

Q71. The domain of the function $fx = \sin^{-1} \frac{x^2 - 3x + 2}{x^2 + 2x + 7}$ is ______ mathongo _____ mathongo

 $(1) [1, \infty)$

(2) (-1,2]

- (3) [-1, ∞) /// mathongo /// mathongo (4) (¬∞,2) go /// mathongo /// mathongo

Let the function $fx = \begin{bmatrix} \log_e 1 + 5x - \log_e 1 + \alpha x \\ x \end{bmatrix}$ if $x \neq 0$ be continuous at x = 0. Then α is equal to

- (1) 10 (3) 5 ongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q73. For $Ix = \int \frac{\sec^2 x \cdot 2022}{\sin^{2022} x} dx$, if $I\frac{\pi}{4} = 2^{1011}$, then one (1) $3^{1010}I\frac{\pi}{3} - I\frac{\pi}{6} = 0$ (2) $3^{1010}I\frac{\pi}{6} - I\frac{\pi}{3} = 0$ (3) $3^{1011}I\frac{\pi}{3} - I\frac{\pi}{6} = 0$ athong (4) $3^{1011}I\frac{\pi}{6} - I\frac{\pi}{3} = 0$ mathong

Q74. If t denotes the greatest integer \leq t, then the value of $\int_0^1 2x - 3x^2 - 5x + 2 + 1 dx$ is

(1)
$$\frac{\sqrt{37} + \sqrt{13} - 4}{6}$$

(1)
$$\frac{\sqrt{37} + \sqrt{13} - 4}{6}$$
 mathong (2) $\frac{\sqrt{37} - \sqrt{13} - 4}{6}$ mathong (4) $\frac{-\sqrt{37} + \sqrt{13} + 4}{6}$

(2)
$$\sqrt{37} - \sqrt{13} - 4$$

$$(4) \frac{-\sqrt{37} + \sqrt{13} + 4}{6}$$

Q75. If the solution curve of the differential equation $\frac{dy}{dx} = \frac{x+y-2}{x-y}$ passes through the point 2, 1 and k+1, 2, k>0, then (1) $2\tan^{-1}\frac{1}{k} = \log_e k^2 + 1$ (2) $\tan^{-1}\frac{1}{k} = \log_e k^2 + 1$

(1)
$$2\tan^{-1}\frac{1}{k} = \log_{e}k^{2} + 1$$

(2)
$$\tan^{-1}\frac{1}{k} = \log_e k^2 + 1$$

(3)
$$2\tan^{-1}\frac{k}{k+1} = \log_e k^2 + 2k + 2$$
 (4) $2\tan^{-1}\frac{1}{k} = \log_e \frac{k^2 + 1}{k^2}$ mathongo

(4)
$$2\tan^{-1}\frac{1}{k} = \log_e \frac{k^2 + 1}{k^2}$$

Q76. Let y = yx be the solution curve of the differential equation $\frac{dy}{dx} + \frac{2x^2 + 11x + 13}{x^3 + 6x^2 + 11x + 6}y = \frac{x+3}{x+1}, x > -1$, which passes through the point 0, 1. Then y1 is equal to

 $\frac{(1)\frac{1}{2}}{(3)\frac{5}{2}}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q77. If 2, 3, 9, 5, 2, 1, 1, λ , 8 and λ , 2, 3 are coplanar, then the product of all possible values of λ is

- (1) $\frac{21}{2}$ (2) $\frac{59}{8}$ (3) $\frac{57}{8}$ ngo /// mathongo /// mathongo /// mathongo /// mathongo
- Q78. Let $\vec{a}, \vec{b}, \vec{c}$ be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and $\vec{a} \times \vec{b} \cdot \vec{b} \times \vec{c} + \vec{b} \times \vec{c} \cdot \vec{c} \times \vec{a} + \vec{c} \times \vec{a} \cdot \vec{a} \times \vec{b} = 168$ then $\vec{a} + \vec{b} + \vec{c}$ is equal to // mathongo /// mathongo /// mathongo /// mathongo

(1) 10

- (3) 16
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- Q79. Let Q be the foot of perpendicular drawn from the point P1, 2, 3 to the plane x + 2y + z = 14. If R is a point on the plane such that $\angle PRQ = 60^{\circ}$, then the area of $\triangle PQR$ is equal to ______ mathongo ______ mathongo

- $r(3) 2\sqrt{3}$ go ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- Q80. Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is (2) $\frac{5}{18}$ mathongo /// mathongo /// mathongo

- **Q81.** Let α , $\beta \alpha > \beta$ be the roots of the quadratic equation $x^2 x 4 = 0$. If $P_n = \alpha^n \beta^n$, $n \in \mathbb{N}$, then $\frac{P_{15}P_{16} - P_{14}P_{16} - P_{15}^2 + P_{14}P_{15}}{P_{13}P_{14}}$ is equal to ______. mathongo /// mathongo ///
- Q82. The number of natural numbers lying between 1012 and 23421 that can be formed using the digits 2, 3, 4, 5, 6 (repetition of digits is not allowed) and divisible by 55 is ...
- **Q83.** If $\sum_{k=1}^{10} K^2 10_{C_k}^2 = 22000$ L, then L is equal to ______. mothongo ______ mathongo
- **Q84.** Let AB be a chord of length 12 of the circle $x-2^2+y+1^2=\frac{169}{4}$ mothongo ///. mathongo ///. mathongo ///. mathongo

			to the circle at equal to	_	ts A and B inter	sect	at the point P , t	hen 1	ive times the d	istano	ce of point P
Q8	and $T = x, y$ The $nS \cap T$	$0 \times \mathbb{N}$ $0 \in \mathbb{R}$ is equ	$9x - 3^2 + 16y$ $\times \mathbb{R}: x - 7^2 + y$ and to	- 4 ²	≤ 144 ≤ 36						
/4.	Let $x = 1$						33, then k is equation k				
Q8						_	ts, at which the al -20, 20, is			+ 3 -	+ mathongo
Q88. If the tangent to the curve $y = x^3 - x^2 + x$ at the point a, b is also tangent to the curve $y = 5x^2 + 2x - 25$ at the point 2, -1, then $2a + 9b$ is equal to											
Q8	9. Let \vec{a} and \vec{b}	be tw	o vectors such	that	$\vec{a} + \vec{b}^2 = \vec{a}^2 +$	$2\vec{b}^2$,	$\vec{a} \cdot \vec{b} = 3$ and \vec{a}	$\vec{i} \times \vec{b}$	$= 75$. Then \vec{a}	$\frac{2}{1}$ is ϵ	equal to
wathongo wathongo wathongo wathongo wathongo wathongo wathongo wathongo Q90. The sum and product of the mean and variance of a binomial distribution are 82.5 and 1350 respectively.											
	They the nur	mber	of trials in the	oinor	mial distribution	is,					

ANSWER	RKEYS	munitorigo	///.	meningo	//.	ngo ///.	muningo	77.	mariango
1. (2) notino	2. (4)	3. (4)	111	4. (2)	5. (3)	6. (3) ///	7. (1)	111	8. (2) hongo
9. (3)	10. (2)	11. (3)		12. (1)	13. (2)	14. (4)	15. (1)		16. (4)
17. (3) athor	18. (3)	mot 19. (2)		20. (2)	21. (4) otho	22. (50)	23. (25)		24. (84)
25. (5)	26. (15)	27. (10)		28. (9)	29. (480)	30. (2)	31. (3)		32. (4)
33. (2)	34. (2)	35. (3)		36. (3)	37. (2)	38. (2)	39. (1)		40. (3)
41. (1)	42. (3)	43. (3)		44. (2)	45. (1)	46. (3)	47. (3)		48. (1)
49. (4)	50. (4)	51. (6)		52. (4)	53. (80)	54. (80)	55. (34)		56. (1)
57. (1) athor	58. (9)	mat 59. (3)		60. (4) ongo	61. (4) natha	62. (2)	ma 63. (2)		64. (2) ong
65. (1)	66. (2)	67. (2)		68. (2)	69. (3)	70. (3)	71. (3)		72. (4)
73. (1)	74. (1)	75. (1)		76. (2)	77. (4)	78. (3)	79. (2)		80. (2)
81. (16)	82. (6)	83. (221)		84. (72)	85. (27)	86. (10)	87. (79)		88. (195)
89. (14)	90. (96)								