MathonGo Q1. $P + \frac{a}{v^2}V - b = RT$ represents the equation of state of some gases. Where P is the pressure, V is the volume, T is the temperature and a, b, R are the constants. The physical quantity, which has dimensional formula as that of $\frac{b^2}{a}$, will be: " mathongo | matho (1) Bulk modulus (2) Modulus of rigidity - (3) Compressibility mathongo // mathongo (4) Energy density // mathongo // mathongo Q2. An object moves with speed v_1 , v_2 and v_3 along a line segment AB, BC and CD respectively as shown in figure. Where AB = BC and AD = 3 AB, then average speed of the object will be: $$(1) \frac{v_1 + v_2 + v_3}{3}$$ $$(3) \frac{3v_1v_2v_3}{v_1v_2 + v_2v_3 + v_3v_1}$$ (1) $$\frac{v_1 + v_2 + v_3}{3}$$ (2) $\frac{v_1 v_2 v_3}{3v_1 v_2 + v_2 v_3 + v_3 v_1}$ (2) $\frac{v_1 v_2 v_3}{3v_1 v_2 + v_2 v_3 + v_3 v_1}$ (4) $\frac{v_1 + v_2 + v_3}{3v_1 v_2 v_3}$ Q3. A child stands on the edge of the cliff 10 m above the ground and throws a stone horizontally with an initial speed of 5 m s⁻¹. Neglecting the air resistance, the speed with which the stone hits the ground will be - (3) 30 ongo /// mathongo /// mathongo (4) 25 nathongo /// mathongo /// mathongo Q4. A block of mass 5 kg is placed at rest on a table of rough surface. Now, if a force of 30 N is applied in the direction parallel to surface of the table, the block slides through a distance of 50 m in an interval of time - 10 s. Coefficient of kinetic friction is (given, $g = 10 \text{ m s}^{-2}$): - (1) 0.60 (2) 0.75 (3) 0.50 (4) 0.25 ///. mathongo ///. mathongo Q5. If earth has a mass nine times and radius twice to the of a planet P. Then $\frac{v_e}{3}\sqrt{x}ms^{-1}$ will be the minimum velocity required by a rocket to pull out of gravitational force of P, where ve is escape velocity on earth. The value of x is - (1) 2 - mathongo mathongo mathongo mathongo mathongo mathongo Q6. Given below are two statements: // mathongo // mathongo // mathongo // mathongo Statement-I: Acceleration due to gravity is different at different places on the surface of earth. Statement-II: Acceleration due to gravity increases as we go down below the earth's surface. In the light of the above statements, choose the correct answer from the options given below - (1) Both Statement I and Statement II are true (2) Both Statement I and Statement II are false - (3) Statement I is true but Statement II is false - (4) Statement I is false but Statement II is true Q7. A mercury drop of radius 10⁻³ m is broken into 125 equal size droplets. Surface tension of mercury is 0.45 N m⁻¹. The gain in surface energy is: $(1) 2.26 \times 10^{-5} \text{ J}$ $(2) 28 \times 10^{-5} \text{ J}$ $(3) 17.5 \times 10^{-5} \text{ J}$ $(4) 5 \times 10^{-5} I$ ## **JEE Main Previous Year Paper** **Question Paper** MathonGo - **Q8.** A sample of gas at temperature T is adiabatically expanded to double its volume. The work done by the gas in the process is given, (given $\gamma = \frac{3}{2}$): - (1) $W = TR\sqrt{2} 2$ mathongo (2) $W = \frac{T}{R}\sqrt{2} 2$ mathongo (2) mathongo (2) mathongo (3) - (3) $W = \frac{R}{T}2 \sqrt{2}$ - (4) $W = RT2 \sqrt{2}$ - **Q9.** The average kinetic energy of a molecule of the gas is - (1) proportional to absolute temperature - (2) proportional to volume (3) proportional to pressure - (4) dependent on the nature of the gas - Q10. A steel wire with mass per unit length 7.0×10^{-3} kg m⁻¹ is under tension of 70 N. The speed of transverse waves in the wire will be: - (1) 200π m s⁻¹ - mathongo $\frac{(2)\ 100\ \text{m}\ \text{s}^{-1}}{(4)\ 50\ \text{m}\ \text{s}^{-1}}$ mathongo $\frac{(2)\ 100\ \text{m}\ \text{m}^{-1}}{(4)\ 50\ \text{m}\ \text{s}^{-1}}$ - $(3) 10 \text{ m s}^{-1}$ - Q11. Let σ be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region E_I , E_{II} and E_{III} - mathone Surface charge Othongo /// mathongo /// mathongo /// mathongo /// mathongo - athongo ///. mathongo ///. mathongo ///. mathongo - athongo ///. mathongo ///. mathongo ///. mathongo - - nathongo ///. mathongo ///. mathongo ///. mathongo - $(1) \overrightarrow{E}_{I} = \frac{2\sigma}{\epsilon_{0}} \hat{n}, \overrightarrow{E}_{II} = 0, \overrightarrow{E}_{III} = \frac{2\sigma}{\epsilon_{0}} \hat{n}$ $(2) \overrightarrow{E}_{I} = 0, \overrightarrow{E}_{II} = \frac{\sigma}{\epsilon_{0}} \hat{n}, \overrightarrow{E}_{III} = 0$ $(3) \overrightarrow{E}_{I} = \frac{\sigma}{2\epsilon_{0}} \hat{n}, \overrightarrow{E}_{II} = 0, \overrightarrow{E}_{III} = \frac{\sigma}{2\epsilon_{0}} \hat{n}$ $(4) \overrightarrow{E}_{I} = \frac{-\sigma}{\epsilon_{0}} \hat{n}, \overrightarrow{E}_{II} = 0, \overrightarrow{E}_{III} = \frac{\sigma}{\epsilon_{0}} \hat{n}$ - /// mathongo (4) $\frac{8}{3}$ Ruthongo /// mathongo /// mathongo - Q13. Find the magnetic field at the point P in figure. The curved portion is a semicircle connected to two long straight wires. **JEE Main Previous Year Paper** MathonGo **Question Paper** (2) $$\frac{\mu_0 i}{2r} 1 + \frac{1}{2r}$$ (4) $\frac{\mu_0 i}{2r} \frac{1}{2} + \frac{1}{2r}$ | List I | | List II | |--------|--|---------| | | | | Q16. 'n' polarizing sheets are arranged such that each makes an angle 45° with the proceeding sheet. An unpolarized light of intensity $$I$$ is incident into this arrangement. The output intensity is found to be $\frac{I}{64}$. The value of n will be: unpolarized light of intensity $$I$$ is incident into this arrangement. The output intensity is found to be value of n will be: $$\begin{array}{c} (1) \ 3 \\ (3) \ 5 \\ \end{array}$$ mathongo $$\begin{array}{c} (2) \ 6 \\ (4) \ 4 \\ \end{array}$$ mathongo $$\begin{array}{c} (2) \ 6 \\ \end{array}$$ mathongo $$\begin{array}{c} (2) \ 6 \\ \end{array}$$ Q17. A proton moving with one tenth of velocity of light has a certain de Broglie wavelength of $$\lambda$$. An alpha particle having certain kinetic energy has the same de-Brogle wavelength λ . The ratio of kinetic energy of proton and that of alpha particle is: $$(1) 2 : 1$$ $(2) 4 : 1$ $(3) 1 : 2$ $(4) 1 : 4$ MathonGo - Q18. The mass of proton, neutron and helium nucleus are respectively 1.0073 u, 1.0087 u and 4.0015u. The binding energy of helium nucleus is: - (1) 14.2 MeV (2) 28.4 MeV (3) 56.8 MeV (4) 7.1 MeV Q19. Match the List I with List II #### List I Intrinsic List II Semiconductor I Fermi-level near valence band B n-type semiconductor Fermi-level at middle of valence and conduction band C p-type semiconductor III Fermi-level near conduction band **D** Metals IV Fermi-level inside conduction band Choose the correct answer from the options given below: mathongo mathongo mathongo - $(1)(A) \rightarrow I,(B) \rightarrow II,(C) \rightarrow III,(D) \rightarrow IV$ - $(2)(A) \rightarrow II,(B) \rightarrow I,(C) \rightarrow III,(D) \rightarrow IV$ - (3) $(A) \rightarrow II, (B) \rightarrow III, (C) \rightarrow I, (D) \rightarrow IV$ (4) $(A) \rightarrow III, (B) \rightarrow I, (C) \rightarrow II, (D) \rightarrow IV$ - Q20. Which of the following frequencies does not belong to FM broadcast. - $(1)\ 106\ MHz$ (2) 64 MHz (3) 99 MHz - (4) 89 MHz - **Q21.** A small particle moves to position $5\hat{i} 2\hat{j} + \hat{k}$ from its initial position $2\hat{i} + 3\hat{j} 4\hat{k}$ under the action of force - Q22. A solid cylinder is released from rest from the top of an inclined plane of inclination 30° and length 60 cm. If the cylinder rolls without slipping, its speed upon reaching the bottom of the inclined plane is m s⁻¹. (Given $g = 10 \text{ m s}^{-2}$) - Q23. A certain pressure 'P' is applied to 1 litre of water and 2 litre of a liquid separately. Water gets compressed to 0.01% whereas the liquid gets compressed to 0.03%. The ratio of Bulk modulus of water to that of the liquid is $\frac{3}{x}$. The value of x is . . - Q24. The amplitude of a particle executing SHM is 3 cm. The displacement at which its kinetic energy will be 25% more than the potential energy is: _____ cm. ____ mathongo ____ mathongo ____ mathongo - Q25. Two equal positive point charges are separated by a distance 2a. The distance of a point from the centre of the line joining two charges on the equatorial line (perpendicular bisector) at which force experienced by a test charge q_0 becomes maximum is $\frac{a}{\sqrt{x}}$. The value of x is _____. | | ag potentiometer, the length of null point for a cell of emf 1.5° V is d by another cell of emf E . the length-of null point increases by | |--|---| | | the of x is mathongo mathongo mathongo | | field of magnitude 4 mT at right angle to radius 3 cm inside magnetic field. The n | source of 220 V, 50 Hz. The circuit contain a resistance reactance $X_L = 79.6 \Omega$. The capacitance of the capacitor needed to | | length 20 cm. The rod is placed in a such | placed horizontally on the principle axis of a concave mirror of focal x a way that mid point of the rod is at 40 cm from the pole of x the mirror will be $\frac{x}{3}$ cm. The value of x is | | and reaches to one of its excited states. The $\frac{x}{\pi} \times 10^{-17}$ eVs. The value of x is | in a hydrogen atom in its ground state. The atom absorbs the radiation are angular momentum of the atom in the excited state is (use $h = 4.14 \times 10^{-15}$ eVs, $c = 3 \times 10^{8}$ m s ⁻¹) | | Assertion A: Hydrogen is an environment Reason R: Atomic number of hydrogen is In the light of the above statements, choos (1) A is true but R is false | belled as Assertion A and the other is labelled as Reason R friendly fuel. 1 and it is a very light element. 5 the correct answer from the options given below (2) Both A and R are true but R is NOT the correct explanation of A (4) Both A and R are true and R is the correct | | /// mathonge m | explanation of A //// mathongo //// mathongo //// mathongo | | (B) Dead burnt plaster (II) | NaOH mathongo mathongo mathongo mathongo nathongo mathongo mathon | | | C) CaSO ₄ | | | (4) (A) - III, (B) - II, (C) -IV, (D) -I | | Q33. Choose the correct statement(s): A. Beryllium oxide is purely acidic in nat B. Beryllium carbonate is kept in the atmo C. Beryllium sulphate is readily soluble in D. Beryllium shows anomalous behavior. | | Choose the correct answer from the options given below: ## **JEE Main Previous Year Paper** #### **Question Paper** MathonGo - n(1) A, B and C only athongo /// mathongo (2) B,C and D only /// mathongo /// mathongo - (3) A and B only - Q34. Resonance in carbonate ion CO_3^{2-} is mathongo // mathongo // mathongo // mathongo - Which of the following is true? /// mathongo - (1) It is possible to identify each structure individually by some physical or chemical method. - (2) All these structures are in dynamic equilibrium with each other. // mathongo // mathongo - (3) Each structure exists for equal amount of time. - (4) CO_3^2 has a single structure i.e., resonance hybrid of the above three structures. - Q35. But-2-yne is reacted separately with one mole of Hydrogen as shown below: $$B \xleftarrow{}_{\text{liq NH}_3} \text{CH}_3 - C \equiv C - \text{CH}_3 \xrightarrow{}_{\Delta} A$$ mathongo /// mathongo /// mathongo /// mathongo Identify the incorrect statements from the options given below: - A. A is more soluble than B. - B. The boiling point & melting point of A are higher and lower than B respectively. - C. A is more polar than B because dipole moment of A is zero. - D. Br₂ adds easily to B than A. - (1) B and C only (2) B, C and D only (3) A, C and D only - (4) A and B only - Q36. How can photochemical smog be controlled? on a mathon matho - (1) By using tall chimneys - (2) By complete combustion of fuel - (3) By using catalytic converters in the automobiles/industry - (4) By using catalyst - Q37. Which of the following represents the lattice structure of $A_{0.95}$ 0 containing A^{2+} , A^{3+} and A^{2-} ions? #### **JEE Main 2023 (01 Feb Shift 1) Question Paper** #### **JEE Main Previous Year Paper** MathonGo (3) Both A and R are true but R is NOT the correct (4) Both A and R are true and R is the correct explanation of A explanation A Q39. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: In an Ellingham diagram, the oxidation of carbon to carbon monoxide shows a negative slope with respect to temperature. **Reason R**: CO tends to get decomposed at higher temperature. In the light of the above statements, choose the correct answer from the options given below - (1) Both A and R are correct and R is the correct explanation of A - (2) A is not correct but R is correct - (3) (3) Both A and R are correct but R is NOT the correct explanation of A - (4) A is correct but R is not correct **Q40.** Given below are two statements: Statement I: Chlorine can easily combine with oxygen to from oxides: and the product has a tendency to explode. | Statement II: Chemical reactivity of an element can be determined by its reaction with oxygen and halogens. | | | | | | | | | |---|---|--|--|--|--|--|--|--| | In the light of the above statements, choose the correct answer from the options given below (1) Both the statements I and II are true (2) Statement I is true but Statement II is false (3) | | | | | | | | | | (3) Statement I is false but Statement II is true | (4) Both the Statements I and II are false | | | | | | | | | Q41. A solution of FeCl ₃ when treated with K ₄ Fe (CN ₎ gives a prussian blue precipitate due to the formation of | | | | | | | | | | (1) $KFe_2(CN)_6$ | (2) FeFe (CN) $_{6}$
(4) Fe ₄ Fe (CN) $_{63}$ | | | | | | | | | (3) $\operatorname{Fe_3Fe}\left(\operatorname{CN}\right)_{62}$ | (4) $\operatorname{Fe_4Fe}\left(\operatorname{CN}\right)_{63}$ | | | | | | | | | Q42. Highest oxidation state of Mn is exhibited in Mn ₂ O ₇ | | | | | | | | | | (A) Mn is tetrahedrally surrounded by oxygen atoms | | | | | | | | | | (B) Mn is octahedrally surrounded by oxygen atoms | mathongo ///. mathongo ///. mathongo | | | | | | | | | (C) Contains Mn - O - Mn bridge | | | | | | | | | | (D) Contains Mn - Mn bond. Choose the correct answer from the options given be | | | | | | | | | | (1) A and C only mathongo /// mathongo | (2) A and D only mathongo mathongo | | | | | | | | | (3) B and D only | (4) B and C only | | | | | | | | | Q43. Which of the following complex will show largest s | plitting of d-orbitals? // mathongo // mathongo | | | | | | | | | (1) $FeC_2O_{43}^{3}$ | (2) FeF_6^{3} | | | | | | | | | $(3) \text{ Fe} (CN)_6^3$ mathongo (4) mathongo | (4) FeNH ₃₆ ³⁺ go // mathongo // mathongo | | | | | | | | | Q44. Which of the following are the example of double sa | alt?
/// mathongo /// mathongo /// mathongo | | | | | | | | | $(A) FeSO_4 \cdot NH_{4_2}SO_4 \cdot 6H_2O$ | | | | | | | | | | (B) $CuSO_4 \cdot 4NH_3 \cdot H_2O$ | | | | | | | | | | (C) $K_2SO_4 \cdot Al_2SO_{4_3} \cdot 24H_2O$ | | | | | | | | | | (D) Fe (CN) ₂ ·4KCN Choose the correct answer. | | | | | | | | | | (1) A and C only | (2) A and B only | | | | | | | | | (3) A, B and D only | (4) B and D only mathongo mathongo | | | | | | | | | Q45. Identify the incorrect option from the following: | JEE Main Previous Year Paper MathonGo **Question Paper** # JEE Main Previous Year Paper MathonGo ### Q50. Match List I and List II List II Class of Compound - (A) Molisch's Test - (B) Biuret Test - (C) Carbylamine Test - (D) Schiff's Test mathongo Functional group / (I)Peptide - (II)Carbohydrate - (III) Primary amine - (IV) Aldehyde Choose the correct answer from the options given below: - (1) (A) I, (B) II, (C) III, (D) IV - (2) (A) III, (B) IV, (C) -I, (D) II - (3) (A) II, (B) I, (C) III, (D) IV - (4) (A) III, (B) IV, (C) -II, (D) I Q51. The density of 3M solution of NaCl is 1.0 g mL⁻¹. Molality of the solution is __ $\times 10^{-2}$ m (Nearest integer). Given: Molar mass of Na and Cl is 23 and 35.5 g mol⁻¹ respectively. Q52. Electrons in a cathode ray tube have been emitted with a velocity of 1000 ms⁻¹. The number of following statements which is/are true about the emitted radiation is Given : $h = 6 \times 10^{-34} Js$, $m_e = 9 \times 10^{-31} kg$ - (A) The deBroglie wavelength of the electron emitted is 666.67 nm - (B) The characteristic of electrons emitted depend upon the material of the electrodes of the cathode ray tube. - (C) The cathode rays start from cathode and move towards anode. - (D) The nature of the emitted electrons depends on the nature of the gas present in cathode ray tube.. - Q53. At 25°C, the enthalpy of the following processes are given: $$H_2(g) + O_2(g) \rightarrow 20H(g)\Delta H^0 = 78 \text{ kJ mol}^{-1} \text{ mathongo} \text{ mathongo}$$ $$H_2(g) + 1/2O_2(g) \rightarrow H_2O(g)\Delta H^0 = -242 \text{ kJ mol}^{-1}$$ $$H_2(g) \rightarrow 2H(g)\Delta H^0 = 436 \text{ kJ mol}^{-1}$$ $$1/20_2$$ (g) $\rightarrow 0$ (g) $\Delta H^0 = 249$ kJ mol⁻¹ What would be the value of X for the following reaction? (Nearest integer) $H_2Og \rightarrow Hg + OHg \Delta H^0 = X kJmol^{-1}$ athongo /// mathongo /// mathongo /// mathongo **Q54.** (i) $X(g) \rightleftharpoons Y(g) + Z(g)$ $K_{p1} = 3$ (ii) $A(g) \rightleftharpoons 2$ B(g) $K_{p2} = 1$ If the degree of dissociation and initial concentration of both the reactants X(g) and A(g) are equal, then the ratio of the total pressure at equilibrium $\frac{p_1}{p_2}$ is equal to x: 1. The value of x is (Nearest integer) Q55. The total number of chiral compound/s from the following is athongo /// mathongo /// mathongo mathongo /// mathongo mg hongo ///. mathongo ///. mathongo ///. mathongo mathongo ///. mathongo ///. mathongo ///. mathongo mathongo /// mathongo /// mathongo Q56.25 mL of an aqueous solution of KCl was found to require 20 mL of 1M AgNO₃ solution when titrated using K₂CrO₄ as an indicator. What is the depression in freezing point of KCl solution of the given concentration? // mathongo /// mathongo /// mathongo /// mathongo (Nearest integer). $(Given: K_f = 2.0 \text{ K kg mol}^{-1})$ mathongo /// mathongo /// mathongo /// mathongo 1) 100% ionization and mathongo /// mathongo /// mathongo /// mathongo 2) density of the aqueous solution as 1 g mL⁻¹ Q57. At what pH, given half cell $MnO_4(0.1M) \mid Mn^{2+} (0.001 M)$ will have electrode potential of 1.282 V ? (Nearest Integer) Given $E_{MnO_4/Mn^2+}^o = 1.54 \text{ V}, \frac{2.303RT}{F} = 0.059 \text{ V}$ mathongo mathongo mathongo Q58. A and B are two substances undergoing radioactive decay in a container. The half life of A is 15 min and that of B is 5 min. If the initial concentration of B is 4 times that of A and they both start decaying at the same time, how much time will it take for the concentration of both of them to be same? min. **Q59.** Sum of oxidation states of bromine in bromic acid and perbromic acid is MathonGo Q60. Number of isomeric compounds with molecular formula C₉H₁₀O which /// mothongo /// mathongo - (i) do not dissolve in NaOH - (ii) do not dissolve in HCl. mathongo /// mathongo /// mathongo /// mathongo /// (iii) do not give orange precipitate with 2, 4 - DNP - (iv) on hydrogenation give identical compound with molecular formula C₉H₁₂O is **Q61.** Let $$S = x$$: $x \in \mathbb{R}$ and $\sqrt{3} + \sqrt{2}^{x^2 - 4} + \sqrt{3} - \sqrt{2}^{x^2 - 4} = 10$. Then nS is equal to - (1) 2 (2) 4 (4) 0 mathongo \mathbb{Z} mathongo \mathbb{Z} mathongo \mathbb{Z} mathongo \mathbb{Z} mathongo \mathbb{Z} **Q62.** If the center and radius of the circle $\frac{z-2}{z-3}=2$ are respectively α , β and γ , then $3\alpha+\beta+\gamma$ is equal to (1) 11 - (3) 10 - go /// mathongo /// mathongo /// mathongo /// mathongo **O63.** The sum to 10 terms of the series $$\frac{1}{1+1\frac{5}{59}+1^4} + \frac{\frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} + \dots \text{ is :-nongo}}{1+1\frac{5}{111}}$$ (2) $\frac{55}{111}$ (3) $\frac{56}{111}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo Q64. The value of $$\frac{1}{\frac{1}{1!50!} + \frac{1}{3!48!} + \frac{1}{5!46!} + \dots + \frac{1}{49!2!} + \frac{1}{51!1!}}$$ is $$(1) \frac{2^{50}}{50!}$$ (2) $\frac{2^{50}}{51!}$ - $(3) \frac{50!}{2^{51}}$ - ngo /// mathongo /// mathongo /// mathongo /// sii athongo /// mathongo /// mathongo /// mathongo /// mathongo **Q65.** The combined equation of the two lines ax + by + c = 0 and ax + by + c' = 0 can be written as ax + by + ca'x + b'y + c' = 0. The equation of the angle bisectors of the lines represented by the equation $2x^2 + xy - 3y^2 = 0$ is thongo /// mathongo /// mathongo /// mathongo (1) $3x^2 + 5xy + 2y^2 = 0$ - $(2) x^2 y^2 + 10xy = 0$ - (3) $3x^2 + xy 2y^2 = 0$ mothongo (4) $x^2 y^2 10xy = 0$ mothongo // mothongo **Q66.** If the orthocentre of the triangle, whose vertices are 1, 2, 2, 3 and 3, 1 is α , β , then the quadratic equation whose roots are $\alpha + 4\beta$ and $4\alpha + \beta$, is - (1) $x^2 19x + 90 = 0$ (2) $x^2 18x + 80 = 0$ (3) $x^2 22x + 120 = 0$ (4) $x^2 20x + 99 = 0$ Q67. The negation of the expression $q \lor ((\sim q) \land p)$ is equivalent to $(1) (\sim p) \land (\sim q)$ $(2) p \land (\sim q)$ $(3) (\sim p) \lor (\sim q)$ $(4) (\sim p) \lor q$ Q68. The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two observations is (1) 1072 (2) 1792 (3) 1216 (4) 1456 **Q69.** For a triangle ABC, the value of $\cos 2A + \cos 2B + \cos 2C$ is least. If its inradius is 3 and incentre is M, then which of the following is NOT correct? (1) Perimeter of $\triangle ABC$ is $18\sqrt{3}$ $(2) \sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$ $(3) \overrightarrow{MA} \cdot \overrightarrow{MB} = -18$ (4) area of $\triangle ABC$ is $\frac{27\sqrt{3}}{2}$ **Q70.** Let R be a relation on \mathbb{R} , given by $R = \{a, b: 3a - 3b + \sqrt{7} \text{ is an irrational number } \}$. Then R is - (1) Reflexive but neither symmetric nor transitive - (2) Reflexive and transitive but not symmetric - (3) Reflexive and symmetric but not transitive (4) An equivalence relation Q71. Let S denote the set of all real values of λ such that the system of equations $$\lambda x + y + z = 1$$ $$x + \lambda y + z = 1$$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo $x + y + \lambda z = 1$ is inconsistent, then $\sum_{\lambda \in S} \lambda^2 + \lambda$ is equal to (2) 12 (3) 4 mathong mathong mathons mathons mathons mathons mathons mathons quantities S be the set of all solutions of the equation $\cos^{-1}2x - 2\cos^{-1}\sqrt{1-x^2} = \pi, x \in -\frac{1}{2}, \frac{1}{2}$. Then $\sum_{x \in S} 2\sin^{-1}x^2 - 1$ mathongo /// mathongo /// mathongo /// mathongo is equal to - $\pi(3) \pi \sin^{-1} \frac{\sqrt{3}}{4}$ mathongo /// mathongo (4) $\pi 2\sin^{-1} \frac{\sqrt{3}}{4}$ mathongo /// mathongo **Q73.** Let $fx = 2x + \tan^{-1} x$ and $gx = \log_e \sqrt{1 + x^2} + x$, $x \in [0, 3]$. Then (1) There exists $x \in 0$, 3 such that f'x < g'x (2) $\max fx > \max gx$ - (3) There exist $0 < x_1 < x_2 < 3$ such that fx < gx, (4) min $fx = 1 + \max_{x \in X_1, x_2} fx$ mathongo mathongo mathongo mathongo mathongo mathongo Q74. $1 + \sin^2 x \quad \cos^2 x \quad \sin 2x$ Let $fx = \begin{cases} \sin^2 x & 1 + \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{cases}$, $x \in \frac{\pi}{6}, \frac{\pi}{3}$. If α and β respectively are the maximum and the $\sin^2 x \qquad \cos^2 x \qquad 1 + \sin 2x$ minimum values of f, then - (1) $\beta^2 2\sqrt{\alpha} = \frac{19}{4}$ (2) $\beta^2 + 2\sqrt{\alpha} = \frac{19}{4}$ (3) $\alpha^2 \beta^2 = 4\sqrt{3}$ mathons (4) $\alpha^2 + \beta^2 = \frac{9}{2}$ (4) $\alpha^2 + \beta^2 = \frac{9}{2}$ mathons (5) mathons Q75. $\lim_{n \to \infty} \frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{2n}$ is equal to :(1) 0 (2) $\log_e 2$ (3) $\log_e \frac{3}{2}$ (4) $\log_e \frac{2}{3}$ **Q76.** The area enclosed by the closed curve C given by the differential equation $\frac{dy}{dx} + \frac{x+a}{y-2} = 0$, y1 = 0 is 4π . Let P and Q be the points of intersection of the curve C and the y-axis. If normals at P and Q on the curve C intersect x-axis at points R and S respectively, then the length of the line segment RS is (1) $2\sqrt{3}$ (3) 2 ### **JEE Main Previous Year Paper** **Question Paper** MathonGo Q77. If y = yx is the solution curve of the differential equation $\frac{dy}{dx} + y \tan x = x \sec x$, $0 \le x \le \frac{\pi}{3}$, y = 1, then $y^{\frac{n}{6}}$ is equal to $(1) \frac{\pi}{12} - \frac{\sqrt{3}}{2} \log_e \frac{2}{e\sqrt{3}}$ $(3) \frac{\pi}{12} - \frac{\sqrt{3}}{2} \log_e \frac{2\sqrt{3}}{e}$ $(4) \frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_e \frac{2}{e\sqrt{3}}$ $(4) \frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_e \frac{2}{e\sqrt{3}}$ $$(1) \frac{\pi}{12} - \frac{\sqrt{3}}{2} \log_e \frac{2}{e\sqrt{3}}$$ (2) $$\frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_e \frac{2\sqrt{3}}{e}$$ (3) $$\frac{\pi}{12} - \frac{\sqrt{3}}{2} \log_e \frac{2\sqrt[4]{3}}{e}$$ $$(4) \frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_e \frac{2}{e\sqrt{3}}$$ Q78. Let the image of the point P2, -1, 3 in the plane x + 2y - z = 0 be Q. Then the distance of the plane 3x + 2y + z + 29 = 0 from the point Q is $$(1) \frac{22\sqrt{2}}{7}$$ (2) $$\frac{24\sqrt{2}}{7}$$ (3) $$2\sqrt{14}$$ /// mathongo /// mathongo (4) $$3\sqrt{14}$$ hongo /// mathongo /// mathongo Q79. The shortest distance between the lines $\frac{x-5}{1} = \frac{y-2}{2} = \frac{z-4}{-3}$ and $\frac{x+3}{1} = \frac{y+5}{4} = \frac{z-1}{-5}$ is (2) $5\sqrt{3}$ (1) $$7\sqrt{3}$$ (2) $$5\sqrt{3}$$ (3) $$6\sqrt{3}$$ $$(4) 4\sqrt{3}$$ **Q80.** In a binomial distribution B (n, p), the sum and product of the mean & variance are 5 and 6 respectively, then find 6(n+p-q) is equal to :-/// mathongo /// mathongo /// mathongo (1)51 (3)53 (4) 50 **Q81.** The number of words, with or without meaning, that can be formed using all the letters of the word ASSASSINATION so that the vowels occur together, is _____. **Q82.** Let $a_1 = 8$, a_2 , a_3 , ... a_n be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170, then the product of its middle two terms is ______. mathongo _____ mathongo _____ mathongo Q83. The number of 3-digit numbers, that are divisible by either 2 or 3 but not divisible by 7 is _____ **Q84.** The remainder when $19^{200} + 23^{200}$ is divided by 49, is **Q85.** If $fx = x^2 + g'1x + g''2$ and $gx = f1x^2 + xf'x + f''x$, then the value of f4 - g4 is equal to _____. $\int_{0}^{1} x^{21} + x^{14} + x^{7} 2x^{14} + 3x^{7} + 6^{1/7} dx = \frac{1}{l} 11^{m/n} \text{ where } l, \quad m, n \in \mathbb{N}, m \text{ and } n \text{ are co-prime then } l + m + n$ n is equal to ///. .mathongo ///. mathongo ///. mathongo **Q87.** Let A be the area bounded by the curve y = xx - 3, the x-axis and the ordinates x = -1 and x = 2. Then 12 A is equal to **Q88.** Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $f'x + fx = \int_0^2 ft dt$. If $f0 = e^{-2}$, then 2f0 - f2 is equal to **Q89.** Let $\vec{v} = \alpha \hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{w} = 2\alpha \hat{i} + \hat{j} - \hat{k}$, and \vec{u} be a vector such that $\vec{u} = \alpha > 0$. If the minimum value of the scalar triple product \vec{u} \vec{v} \vec{w} is $-\alpha\sqrt{3401}$, and \vec{u} . $\hat{i}^2 = \frac{m}{n}$ where m and n are coprime natural numbers, then m + n is equal to ___ # JEE Main 2023 (01 Feb Shift 1) Question Paper # JEE Main Previous Year Paper MathonGo **Q90.** A2, 6, 2, B-4, 0, λ , C2, 3, -1 and D4, 5, 0, $\lambda \le 5$ are the vertices of a quadrilateral ABCD. If its area is 18 square units, then 5 - 6λ is equal to _____. | ANGWED | KEVC | muningo | ///. | m ulin u go | //. | go ///. | m uine go | //. | |-------------------|------------------------------|------------------------------|------|--|-----------------------|----------------------------------|-------------------|--| | ANSWER I | | 3 (2) | | 1 (2) | 5 (1) | 6 (2) | 7 (1) | Q (4) | | | 2. (3) 10. (2) | 3. (2) 11. (4) | | 4. (3) nongo
12. (4) | 5. (1) mathor 13. (3) | 6. (3) /// 14. (3) | 15. (2) | 8. (4) hongo
16. (2) | | 17. (2) athons | | 11. (4)
19. (3) | | 20. (2) | 21. (40) there | 22. (2) | 23. (1) | 24. (2) ongo | | ` _ | 26. (25) | 27. (144) | | 28. (40) | 29. (32) | 30. (828) | ` ′ | 32. (3) | | ///. mathono | 34. (4) | 35. (2) | | 36. (3) | 37. (4) | 38. (1) | 39. (4) | 32. (3) mathongo 40. (1) | | | 42. (1) | 43. (3) | | 44. (1) | 45. (2) | 46. (2) | 47. (2) | 48. (3) | | 77. Triditioni | 50. (3) | 51. (364) | | 52. (2) | 53. (499) | 54. (12) | 55. (2) | 56. (3) | | | 58. (15) | mat 59. (12) | | 60. (2)ongo | 61. (2) nathor | | ma 63. (2) | 64. (2) ongo | | , , | 66. (4) | 67. (1) | | 68. (1) | 69. (4) | 70. (1) | 71. (4) | 72. (1) | | /// mathana | 74. (1) | 75. (2) | | 76. (4) | 77. (1) mathor | 78. (4) | 79. (3) | 80. (2) | | | 82. (754) | | | 84. (29) | 85. (14) | 86. (63) | 87. (62) | 88. (1) | | 89. (3501) | 90. (11) | | | | | | | mathongo |