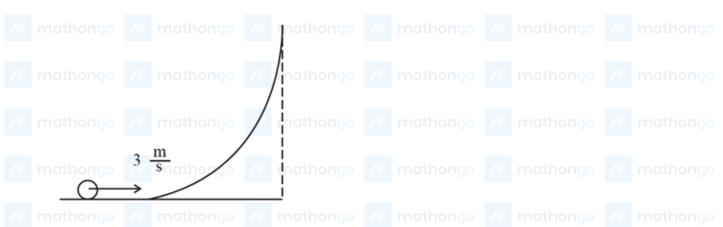
Question Paper


JEE Main Previous Year Paper

MathonGo

_	with List II hongo				
List I			List II		
A. Torqu	mathongo	/// mathongo			
B. Stress	3	II.	$ m M~L^2~T^{-2}$		
C. Press	ure gradient	/// mathoIIIio	$ m M~L^{-1}~T^{-1}$		
D. Coeff	icient of sity // mathongo	///. mathongo	$ m M \ L^{-1} \ T^{-2}$		
Choose the	correct answer from t	he options given be	low:		
(1) A-II, B-I	I, C-IV, D-III		(2) A-IV, B-II, C-II	I, D-I mathongo	
(3) A-II, B-I	IV, C-I, D-III		(4) A-III, B-IV, C-I	, D-II	
2. Given below	v are two statements:				
Statement I	: Area under velocity	-time graph gives t	he distance travelled	by the body in a gi	ven time.
Statement I	II: Area under acceler	ration-time graph is	equal to the change	in velocity in the gi	ven time. athong
In the light of	of given statements, c	hoose the correct ar	nswer from the option	ns given below.	
(1) Both Sta	tement I and Stateme	ent II are true	(2) Both Statement	I and Statement II	are false athong
(3) Statemen	nt I is correct but Stat	ement II is false	(4) Statement I is in	ncorrect but Stateme	ent II is true
meter. The n (1) 200 m	ry of projectile, proje naximum height attai		e will be. (2) 10 m	$-\frac{x^2}{20}$. Where x and	
(3) 5 m			(4) $10\sqrt{2} \text{ m}$		
a horizontal	mass 0.1 kg moving rough surface. The bof friction between the mathons	horizontally with sp ullet gets embedded	l into the block and n	wooden block of r	nass 3.9 kg kept or
	nass 5 kg is moving vits motion for 5 s. Th		_		on the body in the
Q6. A hollow sp	herical ball of unifor	m density rolls up	a curved surface with	h an initial velocity	$7.3~{ m m~s^{-1}}$ (as shown
in figure). M	Saximum height with	respect to the initia	l position covered by	it will be ci	n
(take, $g = 1$	$0~\mathrm{m~s^{-2}})$				
	,				

JEE Main 2023 (08 Apr Shift 2) Question Paper

JEE Main Previous Year Paper MathonGo

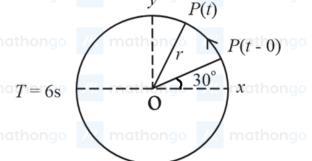
- Q7. The orbital angular momentum of a satellite is L, when it is revolving in a circular orbit at height h from earth surface. If the distance of satellite from the earth centre is increased by eight times to its initial value, then the new angular momentum will be
 - ///. mathongo ///. mathongo (2) $9 L_{\text{nathongo}}$ ///. mathongo ///. mathongo (4) $3 L_{\text{nathongo}}$

(3) 4 L

- **Q8.** The acceleration due to gravity at height h above the earth if $h \ll R$ (Radius of earth) is given by
 - (1) $g' = g\left(1 \frac{h^2}{2R^2}\right)$ (2) $g' = g\left(1 \frac{h}{2R}\right)$ (3) $g' = g\left(1 \frac{2h}{R}\right)$ (4) $g' = g\left(1 \frac{2h^2}{R^2}\right)$

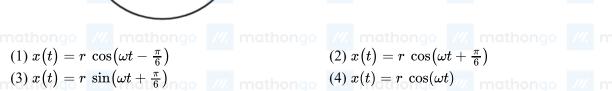
- Q9. A hydraulic automobile lift is designed to lift vehicles of mass 5000 kg. The area of cross section of the cylinder carrying load is 250 cm². The maximum pressure the smaller piston would have to bear is [Assume $g = 10 \text{ m s}^{-2}$
 - (1) 20×10^6 Pa

- (2) $2 \times 10^5 \text{ Pa}$
- (3) 200×10^6 Pa (4) 2×10^6 Pa (5) mothonic (7) mothonic
- Q10. A steel rod of length 1 m and cross-sectional area 10^{-4} m² is heated from 0 °C to 200 °C without being allowed to extend or bend. The compressive tension produced in the rod is $\times 10^4$ N. (Given Young's modulus of steel = $2\times 10^{11}~N~m^{-2},$ coefficient of linear expansion = $10^{-5}~K^{-1}$)
- Q11. Work done by a Carnot engine operating between temperatures 127°C and 27°C is 2 kJ. The amount of heat $^{\prime\prime\prime}_{(2)}$ mathongo $^{\prime\prime\prime}_{kJ}$ mathongo $^{\prime\prime\prime}_{l}$ mathongo transferred to the engine by the reservoir is:
 - (1) 8 kJ


- (4) 4 kJ mathongo ///. mathongo ///. mathongo
- Q12. The temperature at which the kinetic energy of oxygen molecules becomes double than its value at 27°C is
 - $(1) 927^{\circ}C$
- /// mathongo /// mathongo (2) 327°Cnongo /// mathongo /// mathongo
- $(3) 1227^{\circ} C$

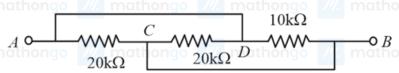
- (4) 627°C
- Q13. For particle P revolving round the centre O with radius of circular path r and regular velocity ω , as shown in below figure, the projection of OP on the x-axis at time t is

Question Paper


JEE Main Previous Year Paper MathonGo

P(t)

- Q14. A guitar string of length 90 cm vibrates with a fundamental frequency of 120 Hz. The length of the string producing a fundamental of 180 Hz will be cm cm mothons / mothons
- Q15. Electric potential at a point P due to a point charge of 5×10^{-9} C is 50 V. The distance of P from the point charge is:

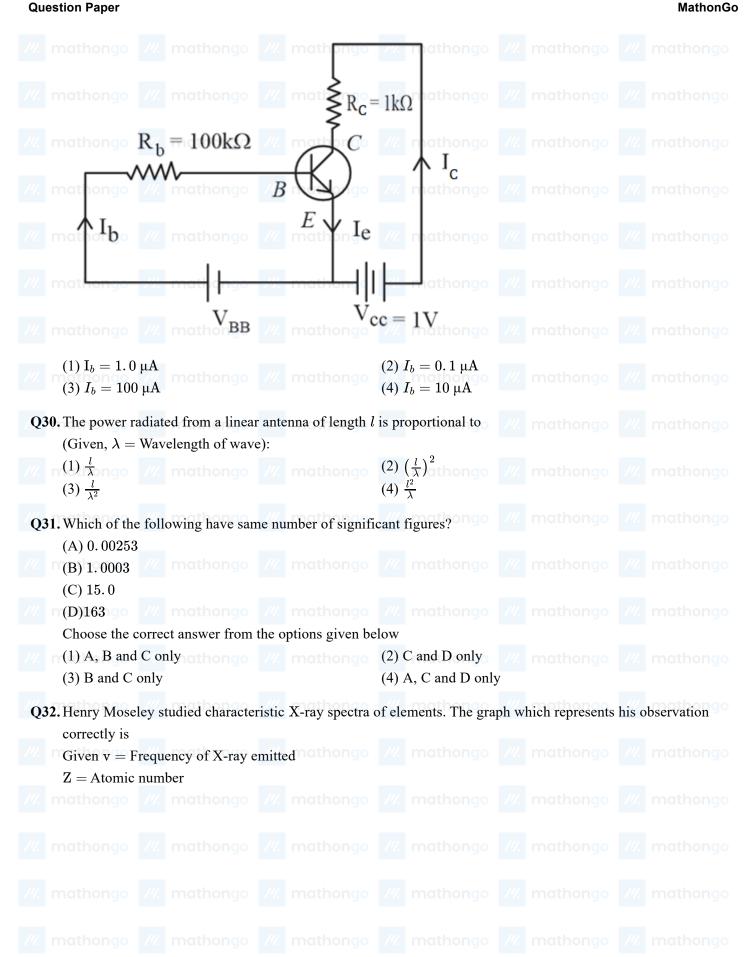

(Assume, $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$) mathongo

 $(3) x(t) = r \sin(\omega t + \frac{\pi}{6})$

(2) 3 cm ///. mathongo ///. mathongo

(3) 0.9 cm

- (4) 90 cm
- Q16. A 600 pF capacitor is charged by 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. Electrostatic energy lost in the process is µJ.
- Q17. The equivalent resistance between A and B as shown in figure is:


- (1) $10 \text{ k}\Omega$
- $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo
- (3) $20 \text{ k}\Omega$

- (4) $30 \text{ k}\Omega$
- Q18. The number density of free electrons in copper is nearly 8×10^{28} m⁻³. A copper wire has its area of crosssection = 2×10^{-6} m² and is carrying a current of 3. 2 A. The drift speed of the electrons is _
- $imes 10^{-6}~\mathrm{m~s^{-1}}$.
- Q19. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. **Assertion A**: Electromagnets are made of soft iron.

Reason R: Soft iron has high permeability and low retentivity. In the light of above statements, choose the most appropriate answer from the options given below.

- (1) \mathbf{A} is not correct but \mathbf{R} is correct
- (2) \mathbf{A} is correct but \mathbf{R} is not correct
- (3) Both A and R are correct and R is the correct explanation of A
- (4) Both \mathbf{A} and \mathbf{R} are correct but \mathbf{R} is NOT the correct explanation of A

Q20. The ratio of magnetic field at the centre of a current from the centre of coil on its axis is \sqrt{x} : 1. The variation	at carrying coil of radius r to the magnetic field at distance r alue of x is
Q21. An emf of 0. 08 V is induced in a metal rod of length when move with a velocity of: (1) $0.5~{\rm m~s^{-1}}$ (3) $3.2~{\rm m~s^{-1}}$	gth 10 cm held normal to a uniform magnetic field of 0. 4 T, (2) $20~{\rm m~s^{-1}}$ (4) $2~{\rm m~s^{-1}}$
Q22. A series combination of resistor of resistance 100 \pm 6. 25 μF is connected to an ac source. The quality	Ω inductor of inductance 1 H and capacitor of capacitance factor of the circuit will be
Q23. The waves emitted when a metal target is bombard (1) Microwaves mathons (3) X-rays	
radius of curvature 30 cm. The centre of curvature	. 0 and 1.5 are separated by a spherical refracting surface of e of surface is towards denser medium and a point object is istance of 15 cm from the pole of the surface. The distance
The width of the fringe for the light of wavelength (1) 4 mm (3) 1.33 mm	(2) 2 mm (4) 3 mm
Q26. In photoelectric effect	mathongo /// mathongo
A. The photocurrent is proportional to the intensity B. Maximum kinetic energy with which photoelec C. Max K.E. with which photoelectrons are emitte D. The emission of photoelectrons require a minin E. Max K.E. of the photoelectrons is independent Choose the correct answer from the options given (1) A and B only (3) A and C only	trons are emitted depends on the intensity of incident light. d depends on the frequency of incident light. num threshold intensity of incident radiation. of the frequency of the incident light. below: (2) A and E only
Q27. The ratio of wavelength of spectral lines H_{α} and H_{α}	I_{β} in the Balmer series is $\frac{x}{20}$. The value of x is
after 5 days the initial amount of the material is (1) 40 g (3) 64 g	nal amount in 3 days. If 8×10^{-3} kg of the material is left mathongo mathongo mathongo (2) 32 g (4) 256 gthongo mathongo m
Q29. For a given transistor amplifier circuit in CE $\beta = 100$. Value of base current I_b is	E configuration $V_{CC}=1~{ m V}, R_C=1~{ m k}\Omega, R_b=100~{ m k}\Omega$ and

Q34. The number of species trom the following carrying a single lone pair on central atom Xenon is $XeF_5^+, XeO_3, XeO_2^-F_2, XeF_5^-, XeO_3^-F_2, XeO_4^-, XeF_4$

Q33. The number of atomic orbitals from the following having 5 radial nodes is

7s, 7p, 6s, 8p, 8d athona // mathona

- Q35. Arrange the following gases in increasing order of van der Waals constant /a/ mathongo /// mathongo
- ///. $n(B) CH_4$ ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
 - (D) C_6H_6 mathons mathons choose the correct option from the following.
- (1) D, C, B and A (3) C, D, B and A (4) A, B, C and D
- Q36. For complete combustion of ethene, mathons when $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$
 - the amount of heat produced as measured in bomb calorimeter is 1406 kJ $\,\mathrm{mol}^{-1}$ at 300 K. The minimum value of $\mathrm{T}\Delta\mathrm{S}$ needed to reach equilibrium is (-) kJ. (Nearest integer)
- Given: $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$ mathongo /// mathongo /// mathongo /// mathongo ///

Q37. The incorrect statements from the following is:

A. The electrical work that a reaction can perform at constant pressure and temperature is equal to the reaction

- Gibbs energy.

 B. E. ... is dependent on the pressure
- B. E_{cell}° is dependent on the pressure. Mathons Mathons Mathons Mathons Mathons C. $\frac{dE_{cell}}{dT} = \frac{\Delta_r S^{\circ}}{nF}$ D. A cell is operating reversibly if the cell potential is exactly balanced by an opposing source of potential
- difference.

Q38. Given below are two statements: // mothongo	
Statement-I: Methyl orange is a weak acid.	
Statement-II: The benzenoid form of methyl ora form.	ange is more intense/deeply coloured than the quinonoid
In the light of the above statement, choose the most (1) Both Statement-I and Statement-II are incorrect	The find horigo
(3) Both Statement-I and Statement-II are correct	(4) Statement-I is correct but Statement-II is incorrect
mathongo /// mathongo /// mathongo	/// mathongo /// mathongo /// mathongo
Q39. The solubility product of $BaSO_4$ is 1×10^{-10} at 298 solution is $\times 10^{-9}$ g L^{-1} (nearest integer). Given: Molar mass of $BaSO_4$ is 233 g mol^{-1}	8 K. The solubility of $BaSO_4$ in 0. $IM K_2 SO_4(aq)$ mathongo // mathongo // mathongo
Q40. Given below are two statements:	
Statement I: In redox titration, the indicators used a	are sensitive to change in pH of the solution.
Statement II: In acid-base titration, the indicators u	sed are sensitive to change in oxidation potential.
In the light of the above statements, choose the mos	t appropriate answer from the options given below
(1) Statement I is correct but Statement II is not incorrect	(2) Both Statement I and Statement II are incorrect
(3) Statement I is incorrect but Statement II is correct	(4) Both Statement I and Statement II are correct ongo
Q41. Which of the following can reduce decomposition o	f $\mathrm{H}_2\mathrm{O}_2$ on exposure to light
(1) Urea	(2) Alkali
(3) Glass containers (1) mothongo	(4) Dust thongo /// mathongo /// mathongo
Q42. For a good quality cement, the ratio of lime to the to	stal of the oxides of Si, Al and Fe should be as close as to
(1) 4 mathongo	(2) 1 mathongo
(3) 2	(4) 3
Q43. Given below are two statements: One is labelled as	mathongo mathongo mathongo
Assertion \bf{A} and the other is labelled as Reason \bf{R}	
Assertion A : Sodium is about 30 times as abundant	
Reason R : Potassium is bigger in size than sodium.	///. mathongo ///. mathongo ///. mathongo
In the light of the above statements, choose the corre	
(1) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}	(2) A is true but R is false mathongo
(3) Both A and R are true but R is NOT the correct explanation of A	(4) Both A and R are false mathongo mathongo
Q44. The descending order of acidity for the following ca (A) CH ₃ COOH	rboxylic acid is-go ///. mathongo ///. mathongo
(B) F ₃ C – COOH	

JEE Main Previous Year Paper MathonGo

Question Paper

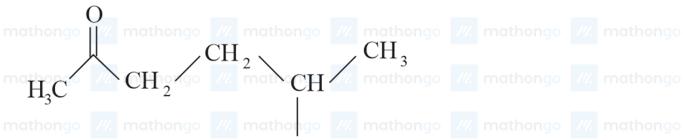
n(C) ClCH₂ - COOH thongo /// mathongo /// mathongo /// mathongo /// mathongo

(D) $FCH_2 - COOH$

(E) $BrCH_2 - COOH_{thongo}$ /// mathongo /// mathongo /// mathongo

Choose the correct answer from the options given below:

(1)
$$B > C > D > E > A$$


ngo /// mathongo (2)
$$E > D > B > A > C$$
 mathongo /// mathongo

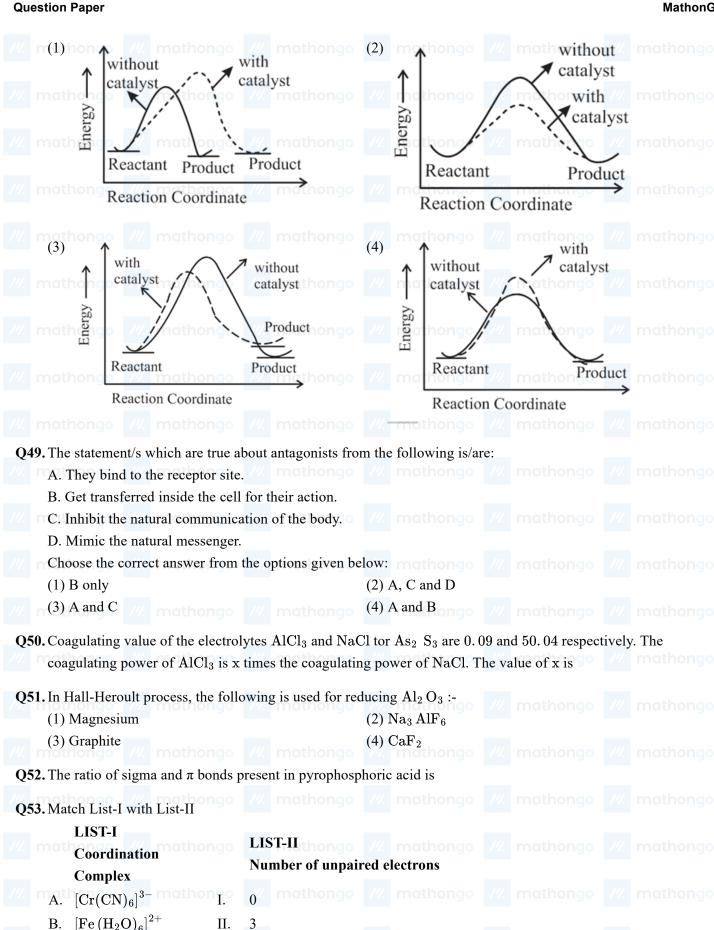
(3)
$$B > D > C > E > A$$

(4)
$$D > B > A > E > C$$

Q45. The correct IUPAC nomenclature for the following compound is: Mathongo Mathongo

COOH

(1) 2-Methyl-5-oxohexanoic acid


- (2) 2-Formyl-5-methylhexan-6-oic acid
- (3) 5-Methyl-2-oxohexan-6-oic acid
- (4) 5-Formyl-2-methylhexanoic acid mathongo /// mathongo

Q46. Which of these reactions is not a part of breakdown of ozone in stratosphere?

- $(3) \stackrel{\odot}{\mathrm{Cl}}(\mathbf{g}) + \mathrm{O}_3(\mathbf{g}) \rightarrow \mathrm{O}_2(\mathbf{g}) + \mathrm{Cl} \stackrel{\odot}{\mathrm{O}}(\mathbf{g})$
- $(4) \operatorname{CF}_2 \operatorname{Cl}_2(g) \overset{\operatorname{uv}}{\to} \overset{\circ}{\operatorname{Cl}}(g) + \overset{\circ}{\operatorname{CF}}_2 \operatorname{Cl}(g)$

Q47. If the boiling points of two solvents X and Y (having same molecular weights) are in the ratio 2: 1 and their enthalpy of vaporizations are in the ratio 1: 2, then the boiling point elevation constant of X is m times the boiling point elevation constant of Y. The value of m is (nearest integer).

- Q48. The correct reaction profile diagram for a positive catalyst reaction.

C. $\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{6}\right]^{3+1}$ III. 2

JEE Main Previous Year Paper MathonGo

Question Paper

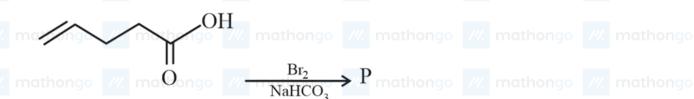
 $\mathrm{ND.t.}[\mathrm{Ni}\,(\mathrm{NH_3})_6]^{2+}$ nathon IV. 4/ mathong /// mathong /// mathong /// mathong Choose the correct answer from the options given below:

- (1) A-II, B-IV, C-I, D-III ongo /// mathongo (2) A-III, B-IV, C-I, D-II mathongo /// mathongo

(3) A-II, B-I, C-IV, D-III

- (4) A-IV, B-III, C-II, D-I
- **Q54.** The observed magnetic moment of the complex $[Mn(NCS)_6)]^{x-}$ is 6.06 BM. The numerical value of x is
- Q55. The sum of oxidation state of the metals in Fe(CO)₅, VO²⁺ and WO₃ is
- Q56. The correct order of reactivity of following haloarenes towards nucleophilic substitution with aqueous NaOH misithongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

$$(CI)$$
 (CI) (CI)


- Choose the correct answer from the options given below:
- (1) A > B > D > C(2) C > A > D > B(3) D > C > B > A(4) D > B > A > C

- Q57. A compound $\prime X\prime$ when treated with phthalic anhydride in presence of concentrated H_2 SO₄ yields $\prime Y\prime$. $\prime Y\prime$ is used as an acid/base indicator. /X/ and /Y/ are respectively
 - (1) Anisole, methyl orange

(2) Salicylaldehyde, Phenolphthalein

(3) Toludine, Phenolphthalein

- (4) Carbolic acid, Phenolphthalein
- Q58. Major product /P/ formed in the following reaction is // mathongo // mathongo // mathongo

/// m(1) hongo /// Brthongo	mathongo (2) megiongo	
mathe go /// cathongo	OH //	mathongo OH mathongo
///. mathongo ///. mathongo	/// Mathongo /// mathongo	/// mathongo /// mathongo
mathongo /// mathongo (3)	mathongo (4) Br	/// mathongo /// mathongo OH
/// matiBrgo /// mathongo	mathongo /// mathongo	Mathongo mathongo
/// mathongo /// mythongo	///. mathongo ///. mathongo	/// mathongo O mathongo
Q59. The product (P) formed from the	40. —	
NO_2	(ii) H_2/Pd	
/// mathongo mathongo	(iii) NaNO ₂ ,HCl, 0°C	(P)athongo /// mathongo
H ₃ C /// mathongo	(iv) H ₃ PO ₂ mathongo	Product /// mathongo /// mathongo
/// mathongo // mathongo	mathongo (2) mathongo	OH mathongo
/// mathongo / mathon	///. mathongo ///. mathongo	nathongo /// mathongo
H ₃ C B /// mathongo /// mathongo	r /// mathongo /// H ₃ Chongo	mathongo mathongo
(3) Br	/// mathongo /// matho	OH mathongo
/// mathongo /// mathong	/// mathongo /// mathong	mathongo mathongo
/// mathongs /// mathongo	///. mathongo ///. mathongo	/// mathongo /// mathongo
	///. mathongo ///. mathongo List II	
List I /// mathonNatural amino acidgo	One Letter Code	
(A) Glutamic acid (B) Glutamine	$ \begin{array}{c} \text{mathong} \overset{\text{(I)}}{\underset{\text{(II)}}{\text{(II)}}} \overset{\text{Q}}{\underset{\text{W}}{\text{v}}} \\ \text{hongo} \\ \end{array} $	
(C) Tyrosine mathongo	/// mathongo E mathongo	

m(D) or Tryptophan athong // mathong (IV) // rYathong // mathong // mathong

Choose the correct answer from the options given below: mathona // mathona // mathona

(1) (A)-III, B-IV, (C)-I, (D)-II

(2) (A)-IV, B-III, (C)-I, (D)-II

- (3) (A)-III, B-I, (C)-IV, (D)-II
- (4) (A)-II, B-I, (C)-IV, (D)-III

Q61. Let m and n be the numbers of real roots of the quadratic equations $x^2-12x+\left\lceil x\right\rceil+31=0$ and $|x^2-5|x+2|-4=0$ respectively, where [x] denotes the greatest integer $\leq x$. Then m^2+mn+n^2 is equal

Q62. Let $A=\left\{\theta\in(0,\ 2\pi): \frac{1+2i\sin\theta}{1-i\sin\theta} \text{ is purely imaginary}\right\}$ Then the sum of the elements is in A is

- $(3) \pi$
- ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q63. If the number of words, with or without meaning, which can be made using all the letters of the word athonors. MATHEMATICS in which C and S do not come together, is (6!)k then k is equal to

- (1) 2835
- //. mathongo ///. mathongo (2) 5670 thongo ///. mathongo ///. mathongo
- (3) 1890

(4)945

Q64. Let a_n be n^{th} term of the series $5 + 8 + 14 + 23 + 35 + 50 + \dots$ and $S_n = \sum_{k=1}^n a_k$. Then $S_{30} - a_{40}$ is equal to

- (1) 11310
- /// mathongo /// mathongo (2) 11260 hongo /// mathongo /// mathongo
- (3) 11290

(4) 11280

Q65. Let 0 < z < y < x be three real numbers such that $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in an arithmetic progression and $x, \sqrt{2}y, z$ are in a geometric progression. If $xy+yz+zx=rac{3}{\sqrt{2}}xyz$, then $3(x+y+z)^2$ is equal to

Q66. The absolute difference of the coefficients of x^{10} and x^7 in the expansion of $\left(2x^2 + \frac{1}{2x}\right)^{11}$ is equal to

- $(1) 13^3 13$
- // mathongo /// mathongo (2) $11^3 = 11$ mathongo
- $(3) 10^3 10$

 $(4) 12^3 - 12$

 $\mathbf{O67.}\,25^{190} - 19^{190} - 8^{190} + 2^{190}$ is divisible by

(1) neither 14 nor 34

- (2) 14 but not by 34 (4) both 14 and 34
- (3) 34 but not by 14 mothongo

Q68. The value of $36 \left(4 \cos^2 9^\circ - 1\right) \left(4 \cos^2 27^\circ - 1\right) \left(4 \cos^2 81^\circ - 1\right) \left(4 \cos^2 243^\circ - 1\right)$ is

(1)54

(2) 18

(3) 27

(4) 36 mathongo /// mathongo /// mathongo

Q69. Let A(0,1), B(1,1) and C(1,0) be the mid-points of the sides of a triangle with incentre at the point D. If the focus of the parabola $y^2 = 4ax$ passing through D is $(\alpha + \beta\sqrt{2}, 0)$, where α and β are rational numbers, then

- $\binom{\beta^2}{(1)}$ 8 ongo /// mathongo /// mathongo /// mathongo /// mathongo

mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Question Paper

JEE Main Previous Year Paper MathonGo

Q70. Let O be the origin and OP and OQ be the tangents to the circle $x^2 + y^2 - 6x + 4y + 8 = 0$ at the points P

and Q on it. If the circumcircle of the triangle OPQ passes through the point $(\alpha, \frac{1}{2})$, then a value of α is

- $(1)\frac{3}{2}$ ngo /// mathongo /// mathongo /// mathongo /// mathongo
- $(3) \frac{5}{2}$ (4) 1

Q71. The ordinates of the points P and Q on the parabola with focus (3,0) and directrix x=-3 are in the ratio 3:1. If $R(\alpha,\beta)$ is the point of intersection of the tangents to the parabola at P and Q, then $\frac{\beta^2}{\alpha}$ is equal to

Q72. If $\alpha > \beta > 0$ are the roots of the equation $ax^2 + bx + 1 = 0$, and

$$\lim_{x \to \frac{1}{\alpha}} \left(\frac{1 - \cos(x^2 + bx + a)}{2(1 - \alpha x)^2} \right)^{\frac{1}{2}} = \frac{1}{k} \left(\frac{1}{\beta} - \frac{1}{\alpha} \right), \text{ then } k \text{ is equal to mathongo}$$
 mathongo

- - mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- **Q73.** The negation of $(p \land (-q)) \lor (-p)$ is equivalent to ______ mathongo _____ mathongo ______
 - $(1) p \wedge (-q)$ (2) $p \wedge q$
 - (3) $p \lor (q \lor (-p))$ mathons (4) $p \land (q \land (-p))$ mathons (5) mathons

Q74. Let the mean and variance of 12 observations be $\frac{9}{2}$ and 4 respectively. Later on, it was observed that two observations were considered as 9 and 10 instead of 7 and 14 respectively. If the correct variance is $\frac{m}{n}$, where m and n are coprime, then m+n are coprime, then m+n is equal to

- o /// mathongo /// mathongo (2) 316 athongo /// mathongo /// mathongo (1) 315

 $(3)\ 314$

 $(4)\ 317$

Q75. Let $A = \{1, 2, 3, 4, 5, 6, 7\}$. Then the relation $R = \{(x, y) \in A \times A : x + y = 7\}$ is

(1) an equivalence relation

- (2) symmetric but neither reflexive nor transitive
- (3) transitive but neither symmetric nor reflexive
- (4) reflexive but neither symmetric nor transitive

Q76. If $A = \begin{bmatrix} 1 & 5 \\ \lambda & 10 \end{bmatrix}$, $A^{-1} = \alpha A + \beta I$ and $\alpha + \beta = -2$, then $4\alpha^2 + \beta^2 + \lambda^2$ is equal to : ongo when mathons of the second secon

- (1) 12 (3) 14 ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q77. Let S be the set of all values of $\theta \in [-\pi, \pi]$ for which the system of linear equations

$$x + y + \sqrt{3}z = 0$$

$$-x+\left(an heta
ight)y+\sqrt{7}z=0$$
 /// mathongo /// mathongo /// mathongo

$$x + y + (\tan \theta)z = 0$$

has non-trivial solution. Then $\frac{120}{\pi} \sum_{0 \in S} \theta$ is equal to _____ mathongo _____ mathongo

(1) 20

(2) 40

- $(3)\ 30$
- /// mathongo /// mathongo /// mathongo /// mathongo

Q78. If domain of the function $\log_e\left(\frac{6x^2+5x+1}{2x-1}\right) + \cos^{-1}\left(\frac{2x^2-3x+4}{3x-5}\right)$ is $(\alpha,\beta) \cup (\gamma,\delta)$, then $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)$ is equal to

JEE Main Previous Year Paper

Question Paper

MathonGo

Q79. Let $R = \{a, b, c, d, e\}$ and $S = \{1, 2, 3, 4\}$. Total number of onto functions $f: R \to S$ such that $f(a) \neq 1$, is

- Let k and m be positive real numbers such that the function $f(x) = \begin{cases} 3x^2 + k\sqrt{x+1}, & 0 < x < 1 \\ mx^2 + k^2, & x \geq 1 \end{cases}$ is differentiable for all x > 0. Then $\frac{8f'(8)}{f'(\frac{1}{x})}$ is equal to
- **Q81.** The integral $\int \left(\left(\frac{x}{2}\right)^x + \left(\frac{2}{x}\right)^x\right) \log_2 x \ dx$ is equal to ______ mothongo _____ mathongo $(1) \left(\frac{x}{2}\right)^x + \left(\frac{2}{x}\right)^x + C$ $(2) \left(\frac{x}{2}\right)^x - \left(\frac{2}{x}\right)^x + C$ $(3) \left(\frac{x}{2}\right)^x \log_2\left(\frac{x}{2}\right) + C \text{ hongo}$ /// mathongo
 (4) $\left(\frac{x}{2}\right)^x \log_2\left(\frac{2}{x}\right) + C \text{ mathongo}$ /// mathongo
- **Q82.** Let [t] denote the greatest integer function. If $\int_0^{2.4} \left[x^2\right] dx = \alpha + \beta \sqrt{2} + \gamma \sqrt{3} + \delta \sqrt{5}, \text{ then } \alpha + \beta + \gamma + \delta \text{ is equal to}$
- **Q83.** Let the area enclosed by the lines $x+y=2,\ y=0,\ x=0$ and the curve $f(x)=\min\{x^2+\frac{3}{4},1+\lceil x\rceil\}$ where [x] denotes the greatest integer $\leq x$, be A. Then the value of 12A is
- **Q84.** Let the solution curve $x = x(y), 0 < y < \frac{\pi}{2}$, of the differential equation Let the solution curve x=x(y), $0< y<\frac{\pi}{2}$, or the differential 1, 1 $(\log_e(\cos y))^2\cos y\ dx-(1+3x\log_e(\cos y))\sin y\ dy=0\ \text{ satisfy } x\left(\frac{\pi}{3}\right)=\frac{1}{2\log_e 2}. \text{ If } x\left(\frac{\pi}{6}\right)=\frac{1}{\log_e m-\log_e n},$ where m and n are coprime, then mn is equal to
- Q85. Let the vectors $\overrightarrow{u_1} = \hat{i} + \hat{j} + a\hat{k}$, $\overrightarrow{u_2} = \hat{i} + b\hat{j} + \hat{k}$, and $\overrightarrow{u_3} = c\hat{i} + \hat{j} + \hat{k}$ be coplanar. If the vectors $\overrightarrow{v_1} = (a+b)\hat{i} + c\hat{j} + c\hat{k}, \ \overrightarrow{v_2} = a\hat{i} + (b+c)\hat{j} + a\hat{k} \ \text{and} \ \overrightarrow{v_3} = b\hat{i} + b\hat{j} + (c+a)\hat{k} \ \text{are also coplanar, then}$ 16(a+b+c) is equal to longo /// mathongo /// mathongo /// mathongo /// mathongo (1) 0
 - m(3) 12 ngo /// mathongo /// mathongo /// mathongo /// mathongo
- **Q86.** The area of the quadrilateral ABCD with vertices A(2,1,1), B(1,2,5), C(-2,-3,5) and D(1,-6,-7) is equal to go /// mathongo /// mathongo /// mathongo /// mathongo
 - (1)48(3) $54\,\mathrm{ngo}$ /// mathongo /// mathongo (4) $9\sqrt{38}$ hongo /// mathongo /// mathongo
- **Q87.** For $a, b \in Z$ and $|a b| \le 10$, let the angle between the plane P: a x + y z = b and the line L: x-1=a-y=z+1 be $\cos^{-1}(\frac{1}{3})$ If the distance of the point (6,-6,4) from the plane P is $3\sqrt{6}$, then
 - ngo /// mathongo /// mathongo /// mathongo /// mathongo (1) 32(3)25(4) 48
- Q88. Let P be the plane passing through the line $\frac{x-1}{1} = \frac{y-2}{-3} = \frac{z+5}{7}$ and the point (2,4,-3). If the image of the
- point (-1,3,4) in the plane P is (α,β,γ) , then $\alpha+\beta+\gamma$ is equal to $(1)\ 10$
 - (4) 11 mathongo /// mathongo /// mathongo
- **Q89.** Let P_1 be the plane 3x y 7z = 11 and P_2 be the plane passing through the points (2, -1, 0), (2, 0, -1),and (5,1,1). If the foot of the perpendicular drawn from the point (7,4,-1) on the line of intersection of the

planes P_1 and P_2 is (α, β, γ) , then $\alpha + \beta + \gamma$ is equal to mathong with mathon α **Q90.** If the probability that the random variable X takes values x is given by $P(X = x) = k(x+1)3^{-x}$, $x=0,1,2,3,\ldots$, where k is a constant, then $P(X\geq 2)$ is equal to

ANSWER K	EYS										
1. (3) _{nathon} 2.	(4)//	3. (3)	14.	4. (4)	5. (4	matho	6. (3	3) ///.	7. (4) _{go}	14.	8. (1) hongo
9. (2)	0. (2)	11. (4)		12. (2)	13. ((3)	14.	(4)	15. (3)		16. (4)
17. (3) othor 18	8. (4)	mat 19. (4)		20. (2)	21. ((30) athor	22.	(75)	23. (4)		24. (60)
25. (6) 26	6. (125)	27. (8)		28. (4)	29. ((30)	30.	(27)	31. (4)		32. (3)
33. (4) 3 4	4. (4)	35. (2)		36. (1)	37. ((3)	38.	(3)	39. (3)		40. (1)
41. (1) 42	2. (2)	43. (3)		44. (3)	45. (1) nathor	46.	(4)	47. (4)		48. (3)
, ,	0. (3)	51. (3)		52. (4)		(1411)	54.		55. (233)		56. (8)
, ,	8. (6)	ma 59. (4)		60. (10) ngo		1)nathor		` ′	63. (3)		64. (4) ongo
/// mathonas	6. (4)	67. (1)		68. (3)	69. (matho	70.	111	71. (4)		72. (2)
	4. (1)	75. (1)		76. (3)	77. (78.		79. (1)		80. (1)
///. mathongo	2. (150)	83. (16)		84. (20)	85. ((180)	86.	(309)	87. (6) mathongo		88. (17) mathongo
, ,	0. (11)										