, MathonGo

Q1	.Three forces	$F_1=10~\mathrm{N},F_2$	$l_2 = 8 N$	I, F	$T_3 = 6 \text{ N} \text{ are}$	acting	on a particl	e of ma	ss 5 kg. The f	orces	F_2 and F_3 and	re
	applied perpe	endicularly so t	that par	ticle	e remains at	rest. I	f the force F	r_1 is ren	noved, then the	e acce	eleration of th	ıe
	particle is											

$$(1) 7 \text{ m s}^{-2}$$

$$(2) 0.5 \text{ m s}^{-2}$$

$$(3) 4.8 \text{ m s}^{-2}$$

$$(4) 2 \text{ m s}^{-2}$$

Q2. Match List I with List II

I
$$T^{-1}$$

II
$$MT^{-2}$$

$$\mathrm{III}$$
 ML^2

$${
m IV} \quad \left[ML^2T^{-1}
ight]$$

Choose the correct answer from the options given below:

Q3. A ball is thrown vertically upward with an initial velocity of 150 m s⁻¹. The ratio of velocity after 3 s and 5 s is $\frac{x+1}{2}$. The ratio of velocity after 3 s and 5 s is

$$\frac{x+1}{x}$$
. The value of x is _____. {take, $g = 10 \text{ m s}^{-2}$ }

$$(1)\ 10$$

$$(2) -5$$

Q4. Given below are two statements:

Statement I: A truck and a car moving with same kinetic energy are brought to rest by applying breaks which provide equal retarding forces. Both come to rest in equal distance.

Statement II: A car moving towards east takes a turn and moves towards north, the speed remains unchanged. The acceleration of the car is zero.

In the light of given statements, choose the most appropriate answer from the options given below

- (1) Statement I is correct but statement II is incorrect (2) Statement I is incorrect but statement II is correct
- (3) Both statement I and Statement II are correct
- (4) Both statement I and statement II are incorrect

Q5. To maintain a speed of 80 km h⁻¹ by a bus of mass 500 kg on a plane rough road for 4 km distance, the work done by the engine of the bus will be _____ kJ. [The coefficient of friction between tyre of bus and road is 0.04

Q6. For rolling spherical shell, the ratio of rotational kinetic energy and total kinetic energy is $\frac{x}{5}$. The value of x is

Q7. Two satellites A and B move round the earth in the same orbit. The mass of A is twice the mass of B. The quantity which is same for the two satellites will be

(1) Speed

(2) Kinetic energy

(3) Total energy

(4) Potential energy

Q8. The ratio of escape velocity of a planet to the escape velocity of earth will be:-

Given: Mass of the planet is 16 times mass of earth and radius of the planet is 4 times the radius of earth.

Question Paper	MathonGo
/// $n(1) 4 : 10$ /// mathongo /// mathongo (3) $1 : \sqrt{2}$	(2) 1n: 4hongo /// mathongo /// mathongo ///
the bigger drop will be mV.	mV are combined to form a bigger drop. The potential of
Q10. Glycerin of density $1.25 \times 10^3 \text{ kg m}^{-3}$ is flowing	g through the conical section of pipe. The area of cross- and pressure drop across its length is 3 N m^{-2} . The rate of x is
Q11. A body cools from 80°C to 60° in 5 minutes. The te	emperature for the surrounding is 20°C. The time it takes to
(1) 450 s (3) 500 s	(2) 420 s mongo // mathongo // mathongo //
 Q12. An engine operating between the boiling and freezing. A. Efficiency more than 27%. B. Efficiency less than the efficiency of a Carnot engage. C. Efficiency equal to 27%. D. Efficiency less than 27%. Choose the correct answer from the options given be 	gine operating between the same two temperatures.
(3) B and D only	(2) A and B only /// mathongo /// mathongo //
temperature will be (Atomic mass of argon = 39.9 (1) 551.7 m s^{-1} (3) 451.7 m s^{-1}	(2) 651.7 m s^{-1} // mathongo // (4) 751.7 m s^{-1}
Q14. A particle is executing simple harmonic motion (SH particle when its displacement is half of its amplitude (1) 1 : 1 (3) 2 : 1	M). The ratio of potential energy and kinetic energy of the le will be (2) 1 : 3 (4) 1 : 4
Q15. For a certain organ pipe, the first three resonance	frequencies are in the ratio of $1:3:5$ respectively. If the d of sound in air is 324 m s^{-1} the length of the organ pipe is
	d opposite charges.

MathonGo

(1) Both A and R are true and R is the correct (2) A is false but R is true explanation of A (3) A is true but R is false (4) Both A and R are true and R is NOT the correct explanation of A Q17. A wire of resistance 160 Ω is melted and drawn in a wire of one-fourth of its length. The new resistance of the wire will be mathongo (2) 10Ω hongo /// mathongo /// mathongo $(1) 16 \Omega$ $(4) 40 \Omega$ $(3) 640 \Omega$ Q18. The current flowing through a conductor connected across a source is 2 A and 1.2 A at 0°C and 100°C respectively. The current flowing through the conductor at 50° C will be $\times 10^{2}$ mA. Q19. Given below are two statements: **Statement I :** The diamagnetic property depends on temperature. Statement II: The induced magnetic dipole moment in a diamagnetic sample is always opposite to the magnetising field. In the light of given statements, choose the correct answer from the options given below (1) Both Statement I and Statement II are False (2) Statement I is incorrect but Statement II is true (3) Statement I is correct but Statement II is false (4) Both Statement I and Statement II are true Q20. A compass needle oscillates 20 times per minute at a place where the dip is 30° and 30 times per minute where the dip is 60°. The ratio of total magnetic field due to the earth at two places respectively is $\frac{4}{\sqrt{x}}$. The value of Q21. A conducting circular loop is placed in a uniform magnetic field of 0.4 T with its plane perpendicular to the field. Somehow, the radius of the loop starts expanding at a constant rate of 1 mm s⁻¹. The magnitude of induced emf in the loop at an instant when the radius of the loop is 2 cm will be **Q22.** Given below are two statements: Statement I: When the frequency of an AC source in a series LCR circuit increases, the current in the circuit first increases, attains a maximum value and then decreases. **Statement II:** In a series LCR circuit, the value of power factor at resonance is one. In the light of given statements, choose the most appropriate answer from the options given below. (1) Statement I is incorrect but Statement II is true (2) Both Statement I and Statement II are false (4) Statement I is correct but Statement II is false (3) Both Statement I and Statement II are true Q23. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: EM waves used for optical communication have longer wavelengths than that of microwave employed in Radar technology. **Reason R:** Infrared EM waves are more energetic than microwaves, (used in Radar) In the light of given statements, choose the correct answer from the options given below.

Question Paper	MathonGo
(1) Both A and R are true but R is NOT the correct explanation of A	(2) A is false but R is true othongo /// mothongo
(3) A is true but R is false go /// mathongo	(4) Both A and R are true and R is the correct explanation of A
ice cube is 24 cm, the refractive index of the ice cu $(1) \frac{3}{2}$	n one side the apparent distance of the bubble is 12 cm. distance of the bubble is observed as 4 cm. If the side of the be is $(2) \frac{2}{3}$ $(4) \frac{4}{3}$ athonormal mathons
Q25. Two convex lenses of focal length 20 cm each are The image of the distant object formed by the comb	placed coaxially with a separation of 60 cm between them. ination is at cm from the first lens.
Q26. A proton and an α -particle are accelerated from res de-Broglie wavelength is :	at by 2 V and 4 V potentials, respectively. The ratio of their
(1) 8 : 1 (3) 4 : 1 (4) mathongo (7) mathongo	(2) 2 : 1 (4) 16 : 1 mathongo /// mathongo
Q27.A 12.5 eV electron beam is used to bombard gaseo lines emitted will be:	us hydrogen at room temperature. The number of spectral
//. m(1).1 ngo //. mathongo //. mathongo (3) 2	(2) 4nathongo /// mathongo /// mathongo (4) 3
Q28. A common example of alpha decay is $^{238}_{92}\mathrm{U} \rightarrow ^{234}_{90}\mathrm{Th} +_{2}\mathrm{He}^{4} + Q$	
Given: $^{238}_{92}\mathrm{U} = 238.05060~\mathrm{u}$	
$^{234}_{90}{ m Th}=234.04360~{ m u}$ mathons $^{4}_{2}{ m He}=4.00260~{ m u}$ and $1{ m u}=931.5rac{{ m MeV}}{c^2}$	
The energy released (Q) during the alpha decay of	238 $_{92} \mathrm{U~is}$ 12
in base current from 100 μ A and 200 μ A, respective	
(1) 110 $(3) 0.9 0$ /// mathongo /// mathongo	(2) 210 (4) 9 nathongo /// mathongo /// mathongo
Q30. The amplitude of $15 \sin(1000 \pi t)$ is modulated contains frequencies of	by $10 \sin(4 \pi t)$ signal. The amplitude modulated signal
A. 500 Hz B. 2 Hz	
C. 250 Hz D. 498 Hz	
E. 502 Hz Choose the correct answer from the options given b	elow mathongo /// mathongo /// mathongo

Given: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$.

Question Paper MathonGo mathongo (2) A and C only /// mathongo /// mathongo m (1) A and B only mathons /// (4) A, D and E only (3) A and D only Q31. A metal chloride contains 55.0% of chlorine by weight. 100 mL vapours of the metal chloride at STP weigh 0.57 g. The molecular formula of the metal chloride is (Given: Atomic mass of chlorine is 35.5 u) mathongo mathongo mathongo (2) MCl₃ (1) MCl₄ mathongo (4) MCl hongo /// mathongo /// mathongo (3) MCl₂ Q32. Given below are two statement: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: 5f electron can participate in bonding to a far greater extent than 4f electrons Reason R: 5f orbitals are not as buried as 4f orbitals In the light of the above statements, choose the correct answer from the options given below (1) A is false but R is true (2) Both A and R are true and R is the correct explanation of A (3) A is true but R is false (4) Both A and R are true but R is NOT the correct explanation of A mathonao **Q33.** Values of work function (W_0) for a few metals are given below $_{
m Li}$ Metal Na K MgCu2.3 2.42 2.253.7 4.8 4.3The number of metals which will show photoelectric effect when light of wavelength 400 nm falls on it Given: $h = 6.6 \times 10^{-34} \text{ J s}$ $c=3 imes10^8~\mathrm{ms^{-1}}$ $e=1.6 imes 10^{-19} \, \mathrm{C}$ athongo /// mathongo /// mathongo Q34. The bond order and magnetic property of acetylide ion are same as that of $(1) O_2^+$ $(2) N_2^+$ $(3) NO^{+}$ $(4) O_2^-$ Q35. Given below are two statements: Statement I: SbCl₅ is more covalent than SbCl₃ mathons mathons Statement II: The higher oxides of halogens also tend to be more stable than the lower ones. In the light of the above statements, choose the most appropriate answer from the options given below. (1) Statement I is incorrect but statement II is correct (2) Both Statement I and Statement II are incorrect (3) Both Statement I and Statement II are correct (4) Statement I is correct but statement II is incorrect Q36. At 600 K, the root mean square (rms) speed of gas X (molar mass = 40) is equal to the most probable speed of gas Y at 90 K. The molar mass of the gas Y is g mol⁻¹. (Nearest integer) molar mass of the gas Y is Q37. One mole of an ideal gas at 350 K is in a 2.0 L vessel of thermally conducting walls, which are in contact with the surroundings. It undergoes isothermal reversible expansion from 2.0 L to 3.0 L against a constant pressure of 4 atm. The change in entropy of the surroundings (ΔS) is _____ J K⁻¹ (Nearest integer)

Q38. An analyst wants to convert 1 L HCl of pH = 1 to a solution of HCl of pH = 2. The volume of water needed

•				1-1-	 	
	to do this d	ilution is	mL. (Near	est integer)		

Q39. Match List I with List II

List i	
Type o	f Hydride

- Electron deficient hydride Α
- Electron rich hydride В
- Electron precise hydride C
- Saline hydride

(1) A-III, B-II, C-IV, D-I

(2) A-II, B-III, C-I, D-IV

 MgH_2

 B_2H_6

 CH_4

HF

IIIIV

(3) A-II, B-III, C-IV, D-I

(4) A-III, B-II, C-I, D-IV

Q40. In the given reaction cycle

$$CaCl_2$$
 + Na_2CO_3 $\longrightarrow X + Y$

- (1) $X CaCO_3$, Y NaCl, Z KCl
- (3) X CaO, Y NaCl + CO₂, Z NaCl
- (2) $X CaCO_3$, Y NaCl, Z HCl
- (4) X CaO, $Y NaCl + CO_2$, Z KCl

Example mothongo

Q41. The density of alkali metals is in the order

- (1) K < Cs < Na < Rb
 - (3) Na < K < Cs < Rb

- (2) Na < Rb < K < Cs nothongo /// mothongo
- (4) K < Na < Rb < Cs

O42. Given below are two statements:

Statement I: Boron is extremely hard indicating its high lattice energy.

Statement II: Boron has highest melting and boiling point compared to its other group members.

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Both Statement I and Statement II are incorrect (2) Statement I is correct but Statement II is
- (4) Statement I is incorrect but Statement II is
- (3) Both statement I and Statement II are correct
- correct

Q43. Correct statements for the given reaction are:

- A. Compound 'B' is aromatic
- B. The completion of above reaction is very slow
- C. 'A' shows tautomerism
- D. The bond lengths of C C in compound B are found to be same

nathongo ///. mathongo

Choose the correct answer from the options given below.

(1) B, C and D only

(2) A, B and C only

(3) A, C and D only

(4) A, B and D only

Q44. Three organic compounds A, B and C were allowed to run in thin layer chromatography using hexane and gave the following result (see figure). The R_f value of the most polar compound is $\times 10^{-2}$

(i) O₃ _ $ext{Q45.}\ 2- ext{hexene} \stackrel{\scriptscriptstyle (1)}{\overset{\smile}{\circ}_3}{\overset{\smile}{\circ}_3} ext{Products}$

The two products formed in above reaction are 10 /// mothongo /// mothongo

(1) Butanal and acetaldehyde

(2) Butanoic acid and acetaldehyde

(3) Butanal and acetic acid

(4) Butanoic acid and acetic acid

Q46. Match List I with List II

List I

List II

- A Nitrogen oxides in air Eutrophication
- B Methane in air

II pH of rain water becomes 5.6

C Carbon dioxide

- III Global warming athongo /// mathongo
- D Phosphate fertilisers in water
- IV Acid rain

Choose the correct answer from the options given below: (1) A-II, B-III, C-I, D-IV

(2) A-I, B-II, C-III, D-IV

(3) A-IV, B-III, C-II, D-I

(4) A-IV, B-II, C-III, D-I

Q47.80 mole percent of MgCl₂ is dissociated in aqueous solution. The vapour pressure of 1.0 molal aqueous solution of MgCl₂ at 38°C is mm Hg. (Nearest integer)

Given: Vapour pressure of water at 38°C is 50 mm Hg mathona // mathona

Q48. For lead storage battery pick the correct statements

- A. During charging of battery, PbSO₄ on anode is converted into PbO₂
- B. During charging of battery, PbSO₄ on cathode is converted into PbO₂
- C. Lead storage battery consists of grid of lead packed with PbO₂ as anode mathonical mathonical
- D. Lead storage battery has ~38% solution of sulphuric acid as an electrolyte

Choose the correct answer from the options given below:

(1) A, B, D only

(2) B, C, D only

(3) B, C only

(4) B, D only

Q49. The reaction $2NO + Br_2 \rightarrow 2NOBr$ takes place through the mechanism given below

 $NO + Br_2 \rightleftharpoons NOBr_2$ (fast)

 $\mathrm{NOBr}_2 + \mathrm{NO} \rightarrow 2\,\mathrm{NOBr}\,\,\,\mathrm{(slow)}$

The overall order of the reaction is mathongo w mathongo w mathongo w mathongo w

- Q50. Four gases, A, B, C and D have critical temperatures 5. 3, 33. 2, 126. 0 and 154. 3K respectively For their adsorption on a fixed amount of charcoal, the correct order is:
 - (1) C > D > B > A

(3) D > C > B > A

- Q51. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: In the Ellingham diagram, a sharp change in slope of the line is observed from Mg \to MgO at

Reason R: There is a large change of entropy associated with the change of state

In the light of the above statements, choose the correct answer from the options given below

- (1) Both A and R are true but R is NOT the correct (2) A is false but R is true explanation of A
- (3) Both A and R are true and R is the correct
- (4) A is true but R is false
- explanation of A
- Q52. The incorrect statement regarding the reaction given below is

natMe—N—Meithongo /// mathongo /// mathongo

- (1) The product 'B' formed in the above reaction is p(2) 'B' is N-nitroso ammonium compound -nitroso compound at low temperature
- (3) The reaction occurs at low temperature
- (4) The electrophile involved in the reaction is NO⁺

JEE Main 2023 (12 Apr Shift 1) Question Paper

JEE Main Previous Year Paper

MathonGo

Q53. Match List I with List II ngo //// mathongo	
	$CFSE\left(\Delta_{0} ight)$
M A. lo $[Cu(NH_3)_6]^{2+}$ though M I. at $h=0.6$	/// mathongo /// mathongo /// mathongo //
B. $[Ti(H_2O)_6]^{3+}$ II. -2.0 III. -1.2	
D. $\left[NiF_6 ight]^{4-}$ IV. -0.4	
Choose the correct answer from the options given b	
(1) A(III), B(IV), C(I), D(II) (3) A(I), B(II), C(IV), D(III) (4) mathongo	(2) A(I), B(IV), C(II), D(III) (4) A(II), B(III), C(I), D(IV) hongo /// mathongo //
Q54. In the following reaction	
mathongo /// mathongo /// mathongo	
mathor (i) Mg 'A' (N	lajor Product) /// mathongo /// mathongo //
\sim $^{\circ}$ $^{\circ$	
mathongo /// mathongo /// mathongo	(2) mathongo // mathongo // mathongo //
/// mathongo	mathons mathongo mathongo
/// mathongo /// mathongo	/// matholigo // mathongo /// mathongo //
	/// mathongo /// mathongo /// mathongo //
mathongo H. mathongo /// mathongo	(4) matlongo /// mathongo /// mathongo //
mathong OH mathongo	/// mathongo /// MgBr _{ngo} /// mathongo //
/// mathongo /// mathongo /// mathongo	
marMe—C	
$C \rightarrow CH_3 \xrightarrow{A} A$	// _A , mathongo /// mathongo /// mathongo //
	/// mathongo /// mathongo /// mathongo //
A in the above reaction is:	

(3) Me Me Mathongo Ma

mathongo // matho

mathongo /// math

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

mathongo // mathon

Q57. The mass of NH₃ produced when 131.8 kg of cyclohexane carbaldehyde undergoes Tollen's test is the kg. (Nearest Integer)

Molar mass of $C=12~\mathrm{g/mol}$ mothongo mathongo mathongo mathongo mathongo $N=14~\mathrm{g/mol}$

 $^{\prime\prime\prime\prime}$ m $^{\rm O}$ m $^{\rm i}$ mol mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$

Q58. The major product 'P' formed in the following sequence of reactions is

mathongo /// matho

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

 /// mathongo
 /// mathongo
 /// mathongo
 /// mathongo
 /// mathongo
 /// mathongo

JEE Main 2023 (12 Apr Shift 1)

JEE Main Previous Year Paper

Question Paper

MathonGo

Q59. Match List I with List II

math List I mathongo matho List II (Example) (Type)

- A 2-chloro-1, 3-butadiene Biodegradable polymer
 - B Nylon 2-nylon 6 II Synthetic Rubber
- C Polyacrylonitrile hongo W maili Polyester mathongo
- D Dacron IV Addition Polymer

Choose the correct answer from the options given below: mathongo // mathongo

(1) A(II), B(IV), C(I), D(III)

(2) A(II), B(I), C(IV), D(III)

(3) A(IV), B(I), C(III), D(II)

- (4) A(IV), B(III), C(I), D(II) hongo
- **Q60.** In an oligopeptide named Alanylglycylphenyl alanyl isoleucine, the number of sp^2 hybridised carbons is
- **Q61.** Let α , β be the roots of the quadratic equation $x^2 + \sqrt{6}x + 3 = 0$. Then $\frac{\alpha^{23} + \beta^{23} + \alpha^{14} + \beta^{14}}{\alpha^{15} + \beta^{15} + \alpha^{10} + \beta^{10}}$ is equal to a thought
 - (1)81

(2)9

- (3)72
- mathongo /// mathongo (4) 729 thongo /// mathongo /// mathongo
- Q62. Let C be the circle in the complex plane with centre $z_0 = \frac{1}{2}(1+3i)$ and radius r=1. Let $z_1=1+i$ and the complex number z_2 be outside circle C such that $|z_1-z_0||z_2-z_0|=1$. If z_0 , z_1 and z_2 are collinear, then the smaller value of $|z_2|^2$ is equal to
 - $(1)\frac{5}{2}$
- /// mathongo /// mathongo /// mathongo /// mathongo
- $(3) \frac{13}{2}$

- $(4) \frac{3}{2}$
- Q63. The number of five-digit numbers, greater than 40000 and divisible by 5, which can be formed using the digits 0, 1, 3, 5, 7 and 9 without repetition, is equal to
 - (1) 132

(2) 120

(3)72

- (4) 96
- **Q64.** Let the digits a, b, c be in A.P. Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in A.P. at least once. How many such numbers can be formed?
- **Q65.** Let $a_n > be$ a sequence such that $a_1 + a_2 + \ldots + a_n = \frac{n^2 + 3n}{(n+1)(n+2)}$. If $28 \sum_{k=1}^{10} \frac{1}{a_k} = p_1 \ p_2 \ p_3 \ldots \ p_m$, where $p_1, \ p_2, \ \ldots \ p_m$ are the first m prime numbers, then m is equal to

m(1) 5 ngo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Q66. If $\frac{1}{n+1} {}^nC_n + \frac{1}{n} {}^nC_{n-1} + \ldots + \frac{1}{2} {}^nC_1 + {}^nC_0 = \frac{1023}{10}$ then n is equal to

- (1) 9 (3) 7 ngo /// mathongo /// mathongo /// mathongo /// mathongo

Q67. The sum, of the coefficients of the first 50 terms in the binomial expansion of $(1-x)^{100}$, is equal to

 $(2)^{99}C_{49}$

- $(3) {}^{101}C_{50}$ (4) $-{}^{99}C_{49}$ (4) mathong // mathong

Q68. If the point $\left(\alpha, \frac{7\sqrt{3}}{3}\right)$ lies on the curve traced by the mid-points of the line segments of the lines $x\,\cos heta+y\sin heta=7,\; heta\in\left(0,\,rac{\pi}{2}
ight)$ between the co-ordinates axes, then lpha is equal to

- o /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q69. In a triangle ABC, if $\cos A + 2 \cos B + \cos C = 2$ and the lengths of the sides opposite to the angles A and Care 3 and 7 respectively, then $\cos A - \cos C$ is equal to

- mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q70. Two circles in the first quadrant of radii r_1 and r_2 touch the coordinate axes. Each of them cuts off an intercept of 2 units with the line x+y=2. Then $r_1{}^2+r_2{}^2-r_1r_2$ is equal to _____.

Q71. Let $P\Big(\frac{2\sqrt{3}}{\sqrt{7}},\,\frac{6}{\sqrt{7}}\Big),~Q,~R$ and S be four points on the ellipse $9x^2+4y^2=36$. Let PQ and RS be mutually perpendicular and pass through the origin. If $\frac{1}{(PQ)^2} + \frac{1}{(RS)^2} = \frac{p}{q}$, where p and q are coprime, then p+q is equal to

- (1) 147
- /// mathongo /// mathongo /// mathongo /// mathongo
- (3) 137

Q72. Among the two statements was mathong with mathon with

 $(S_1):(p\Rightarrow q)\land (p\land (\lnot q))$ is a contradiction and $(S_2):(p\land q)\lor ((\lnot p)\land q)\lor (p\land (\lnot q))\lor ((\lnot p)\land (\lnot q))$ is a tautology

(1) only (S_2) is true

- (2) only (S_1) is true
- m (3) both are false mathongo /// mathongo (4) both are true /// mathongo /// mathongo

Q73. Let the positive numbers a_1 , a_2 , a_3 , a_4 and a_5 be in a G.P. Let their mean and variance be $\frac{31}{10}$ and $\frac{m}{n}$ respectively, where m and n are co-prime. If the mean of their reciprocals is $\frac{31}{10}$ and $a_3 + a_4 + a_5 = 14$, then m+n is equal to _ athongo /// mathongo /// mathongo /// mathongo /// mathongo

Q74. The number of relations, on the set $\{1, 2, 3\}$ containing (1, 2) and (2, 3) which are reflexive and transitive

Q75. Let $A = \begin{bmatrix} 1 & \frac{1}{51} \\ 0 & 1 \end{bmatrix}$. If $B = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} A \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$, then the sum of all the elements of the matrix $\sum_{n=1}^{50} B^n$ is equal to

JEE Main 2023 (12 Apr Shift 1)

JEE Main Previous Year Paper MathonGo

Question Paper

m (1) 75 go ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Q76. Let $D_k = \begin{vmatrix} 1 & 2k & 0 & 2k-1 \\ n & n^2+n+2 & n^2 \\ n & n^2+n+2 \end{vmatrix}$. If $\sum_{k=1}^n D_k = 96$, then n is equal to ______. mathons

Q77. Let D be the domain of the function $f(x)=\sin^{-1}\Bigl(\log_{3x}\Bigl(rac{6+2\log_3x}{-5x}\Bigr)\Bigr)$. If the range of the function $g:D o\mathbb{R}$ defined by g(x) = x - [x], ([x] is the greatest integer function), is (α, β) , then $\alpha^2 + \frac{5}{\beta}$ is equal to

 $^{\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ (1) 135(3)46

Q78. Let [x] be the greatest integer $\leq x$. Then the number of points in the interval (-2, 1) where the function

 $f(x) = |[x]| + \sqrt{x - |x|}$ is discontinuous, is If the total maximum value of the function $f(x)=\left(\frac{\sqrt{3e}}{2\sin x}\right)^{\sin^2 x},\ x\in\left(0,\,\frac{\pi}{2}\right),\ \text{is }\,\frac{k}{e},\ \text{then }\left(\frac{k}{e}\right)^8+\frac{k^8}{e^5}+k^8 \ \text{is}$

(2) $e^5 + e^6 + e^{11}$ $(1) e^3 + e^6 + e^{11}$

 $(3) e^3 + e^6 + e^{10}$ mathongo (4) $e^3 + e^5 + e^{11}$ mathongo (4) mathongo

Q80. Let $I(x) = \int \sqrt{\frac{x+7}{x}} \, dx$ and $I(9) = 12 + 7\log_e 7$. If $I(1) = \alpha + 7\log_e \left(1 + 2\sqrt{2}\right)$, then α^4 is equal to _____.

Q81. If $\int_{-0.15}^{0.15} |100x^2 - 1| dx = \frac{k}{3000}$, then k is equal to ____

/// mathongo /// mathongo /// mathongo **Q82.** The area of the region enclosed by the curve $y = x^3$ and its tangent at the point (-1, -1) is

(1) $\frac{19}{4}$ (2) $\frac{23}{4}$ athongo // mathongo // mathongo // mathongo // mathongo //

Q83. Let y = y(x), y > 0, be a solution curve of the differential equation $(1 + x^2)dy = y(x - y)dx$. If y(0) = 1and $y(2\sqrt{2}) = \beta$, then

 $m(1) e^{3\beta-1} = e\left(3+2\sqrt{2}\right)$ ngo /// mathongo (2) $e^{3\beta-1} = e\left(5+\sqrt{2}\right)$ mathongo ///

(4) $e^{\beta-1} = e^{-2} \left(5 + \sqrt{2}\right)$ mathons (4) mathons (5) mathons (7) $(3) \; e^{eta - 1} = e^{-2} \Big(3 + 2 \sqrt{2} \Big)$

Q84. Let a, b, c be three distinct real numbers, none equal to one. If the vectors $a\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + b\hat{j} + \hat{k}$ and $\hat{i}+\hat{j}+c\hat{k}$ are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ is equal to othorogo /// mathongo /// mathongo

(2) -1

m(3) =2go /// mathongo /// mathongo (4) 1 nathongo /// mathongo /// mathongo

Q85. Let $\lambda \in \mathbb{Z}$, $\overrightarrow{a} = \lambda \hat{i} + \hat{j} - \widehat{k}$ and $\overrightarrow{b} = 3\hat{i} - \hat{j} + 2\widehat{k}$. Let \overrightarrow{c} be a vector such that $\left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right) \times \overrightarrow{c} = \overrightarrow{0}$, $\overrightarrow{a} \cdot \overrightarrow{c} = -17$ and $\overrightarrow{b} \cdot \overrightarrow{c} = -20$. Then $\left|\overrightarrow{c} \times \left(\lambda \hat{i} + \hat{j} + \widehat{k}\right)\right|^2$ is equal to

(1) 46

(3)62mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. **Q86.** Let the plane x + 3y - 2z + 6 = 0 meet the co-ordinate axes at the points A, B, C. If the orthocenter of the triangle ABC is $(\alpha, \beta, \frac{6}{7})$, then $98(\alpha + \beta)^2$ is equal to

Q87. Let the lines $L_1: \frac{x+5}{3} = \frac{y+4}{1} = \frac{z-\alpha}{-2}$ and $L_2: 3x + 2y + z - 2 = 0 = x - 3y + 2z - 13$ be coplanar. If the point P(a, b, c) on L_1 is nearest to the point Q(-4, -3, 2), then |a| + |b| + |c| is equal to

(1) 12

(1) 12

(3) 8

Question Paper

 $(4)\ 10$

mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo **Q88.** Let the plane P: 4x - y + z = 10 be rotated by an angle $\frac{\pi}{2}$ about its line of intersection with the plane x+y-z=4. If α is the distance of the point (2, 3, -4) from the new position of the plane P, then 35α is equal to

- (1)85
- mathongo ma
- (3) 126

Q89. Two dice A and B are rolled. Let the numbers obtained on A and B be α and β respectively. If the variance of $\alpha - \beta$ is $\frac{p}{q}$, where p and q are co-prime, then the sum of the positive divisors of p is equal to

- m(1) 72 go /// mathongo /// mathongo (2) 36 athongo /// mathongo /// mathongo

(3)48

Q90. A fair n (n > 1) faces die is rolled repeatedly until a number less than n appears. If the mean of the number of tosses required is $\frac{n}{9}$, then n is equal to

- mathongo /// mathongo /// mathongo /// mathongo /// mathongo

JEE	IVIAIII	2023	(12 Apr	Sillit
Ques	tion P	aper		

ANSWER KEYS	muiturgo ///.	muningo	///. Parterial or go ///	muliungo /	«. muim go
1. (4) 2. (3)	3. (4)	4. (1)	5. (1) 6. (4)	7. (3)	8. (3) hongo
9. (2) 10. (2)	11. (1)	12. (2)	13. (2) 14. (3)	15. (2)	16. (1)
17. (3) athon 18. (4)	mat _{19. (1)} ///.	20. (4)	21. (784) 22. (2)	23. (160)	24. (4) ongo
25. (1) 26. (15)	27. (243)	28. (50)	29. (100) 30. (4)	31. (3)	32. (2)
33. (3) 34. (3)	35. (1)	36. (2)	37. (4) 38. (3)	39. (3)	40. (4)
41. (3) 42. (4)	43. (3) ///	44. (3)	45. (2) 46. (2)	47. (2)	48. (3)
49. (4) 50. (2)	51. (3)	52. (4)	53. (3) 54. (900	0) 55. (25)	56. (48)
57. (3) athon 58. (15)	mat 59. (60) ///	60. (10) ngo	61. (1) athor 62. (1)	ma 63. (2)	64. (3) ongo
65. (1) 66. (4)	67. (4)	68. (2)	69. (4) 70. (4)	71. (4)	72. (1)
73. (1) 74. (4)	75. (1)	76. (4)	77. (1) 78. (4)	79. (3)	80. (3)
81. (1260) 82. (7)	83. (211)	84. (4)	85. (6) 86. (2)	87. (64)	88. (575)
89. (288) 90. (10)					