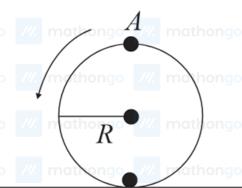
Q1. Two trains A and B of length l and 4l are travelling into a tunnel of length L in parallel tracks from opposite directions with velocities 108 km h^{-1} and 72 km h^{-1} , respectively. If train A take 35 s less time than train B to cross the tunnel then, length L of tunnel is:


(Given L = 60 l)

(1) 1200 m

/// mathongo (2) 900 m mathongo /// mathongo /// mathongo

(3) 1800 m

Q2. A disc is rolling without slipping on a surface. The radius of the disc is R. At t = 0, the top most point on the disc is A as shown in figure. When the disc completes half of its rotation, the displacement of point A from its initial position is mathongo /// mathongo

(2)
$$R\sqrt{(\pi^2+4)}$$
 mathongo

(3)
$$R\sqrt{(\pi^2+1)}$$

(4)
$$2R\sqrt{(1+4\pi^2)}$$

Q3. The ratio of powers of two motors is $\frac{3\sqrt{x}}{\sqrt{x+1}}$, that are capable of raising 300 kg water in 5 minutes and 50 kg water in 2 minutes respectively from a well of 100 m deep. The value of x will be

(1) 16

(2) 2

(3) 2.4

(4) 4 mathongo /// mathongo //

Q4. A body of mass (5 ± 0.5) kg is moving with a velocity of (20 ± 0.4) m s⁻¹. Its kinetic energy will be

- (1) (1000 ± 0.14) J athongo /// mathongo (2) (500 ± 0.14) J

(3) $(500 \pm 140) \text{ J}$

(4) $(1000 \pm 140) \text{ J}$

Q5. Two bodies are having kinetic energies in the ratio 16: 9. If they have same linear momentum, the ratio of their masses respectively is:

(1) 3 : 4

mathongo (2) 9:16 hongo /// mathongo /// mathongo

(3) 16:9

(4) 4:3

Q6. A bullet of 10 g leaves the barrel of gun with a velocity of 600 m s^{-1} . If the barrel of gun is 50 cm long and mass of gun is 3 kg, then value of impulse supplied to the gun will be:

(1) 6 N s

(2) 3 N s

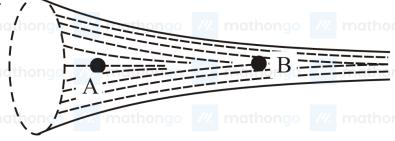
(3) 36 N s

(4) 12 N s

Q7. A solid sphere is rolling on a horizontal plane without slipping. If the ratio of angular momentum about axis of rotation of the sphere to the total energy of moving sphere is π : 22 then, the value of its angular speed will be $\rm rad~s^{-1}$.

Question Paper MathonGo

Q	8. A planet hav	ing r	nass	$9~\rm M_{\rm e}$	and	radiu	${ m s}~4{ m R}_{ m e},$	where	${ m M_e}$	and 1	$R_{ m e}$ are	mass	and	radius	of e	arth i	respect	ively,	has
	escape veloc	ity in	km	$ m s^{-1}$ gi	iven	by: (C	iven e	escape v	eloc	ity or	earth	$V_{ m e} =$	11. 2	$2 imes 10^3$	m s	$^{-1})$			


/// mathongo (2) 16.8 thongo /// mathongo /// mathongo

(3) 11.2

- (4) 33.6
- **Q9.** Under isothermal condition, the pressure of a gas is given by $P = aV^{-3}$, where a is a constant and V is the volume of the gas. The bulk modulus at constant temperature is equal to
- ngo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- (3) 2P

- $(4) \frac{P}{2}$
- Q10. The elastic potential energy stored in a steel wire of length 20 m stretched through 2 cm is 80 J. The cross sectional area of the wire is mm^2 . (Given, $Y = 2.0 \times 10^{11} \text{ N m}^{-2}$)

Q11.

The figure shows a liquid of given density flowing steadily in horizontal tube of varying cross-section. Crosssectional areas at A is 1.5 cm², and B is 25 mm², if the speed of liquid at B is 60 cm s⁻¹ then (P_A-P_B) is (Given P_A and P_B are liquid pressures at A and B points. 况 mathongo 🚧 mathongo 🚧 mathongo

Density $\rho = 1000 \text{ kg m}^{-3}$

A and B are on the axis of tube)

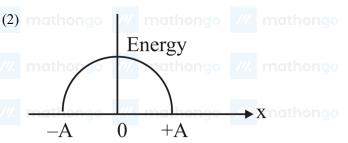
(1) 135 Pa

(2) 27 Pahongo /// mathongo /// mathongo

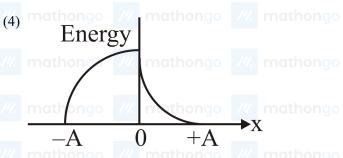
 $(3)\ 175\ Pa$

- $(4)\ 36\ Pa$
- mathongo ///. mathongo Q12. The rms speed of oxygen molecule in a vessel at particular temperature is $\left(1+\frac{5}{x}\right)^{\frac{1}{2}}v$, when v is the average speed of the molecule. The value of x will be:

(take $\pi = \frac{22}{7}$)


(3)28

- mathongo (2) 8 mathongo (4) 4 mathongo (4) 4 mathongo
- Q13. Which graph represents the difference between total energy and potential energy of a particle executing SHM vs its distance from mean position?


JEE Main 2023 (13 Apr Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

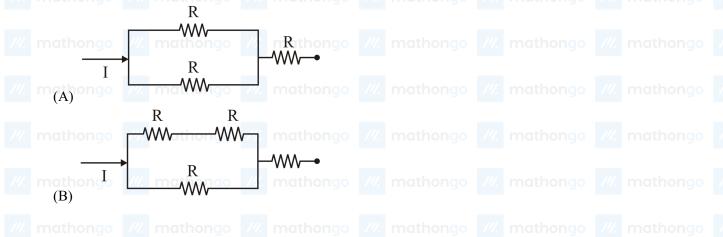
Energy

W. mathongo Energy 0

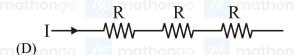
Q14. At a given point of time the value of displacement of a simple harmonic oscillator is given as $y = A \cos(30^\circ)$. If amplitude is 40 cm and kinetic energy at that time is 200 J, the value of force constant 1.0×10^x N m⁻¹. The value of x is

Q15. Two charges of each magnitude 0.01 C and separated by a distance of 0.4 mm constitute an electric dipole. If the dipole is placed in an uniform electric field \overrightarrow{E} of 10 dyne \cdot C⁻¹ making 30° angle with \overrightarrow{E} , the magnitude of torque acting on dipole is:

(1)
$$4.0 \times 10^{-10} \text{ N m}$$


(2)
$$1.0 \times 10^{-8}$$
 N m
(4) 2.0×10^{-10} N m

(3)
$$1.5 \times 10^{-9} \text{ N m}$$


(4)
$$2.0 \times 10^{-10} \text{ N m}$$

Q16. A thin infinite sheet charge and an infinite line charge of respective charge densities $+\sigma$ and $+\lambda$ are placed parallel at 5 m distance from each other. Points P and Q are at $\frac{3}{\pi}$ m and $\frac{4}{\pi}$ m perpendicular distances from line charge towards sheet charge, respectively. E_p and E_q are the magnitudes of resultant electric field intensities at point P and Q respectively. If $\frac{E_P}{E_Q}=\frac{4}{a}$ for $2|\sigma|=|\lambda|$, then the value of a is

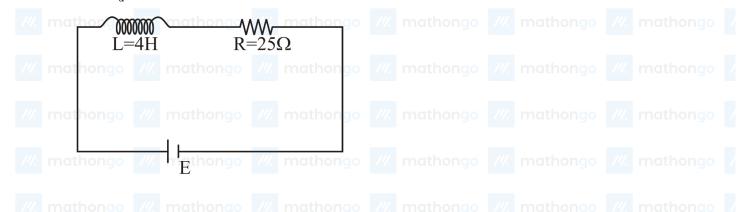
Q17. Different combination of 3 resistors of equal resistance R are shown in the figures. The increasing order for power dissipation is:

 $(1) P_B < P_C < P_D < P_A$

 $(2) P_C < P_D < P_A < P_B$

(3) $P_C < P_B < P_A < P_D$

- (4) $P_A < P_B < P_C < P_{D_{10}}$ mathongo
- Q18. A potential V_0 is applied across a uniform wire of resistance R. The power dissipation is P_1 . The wire is then cut into two equal halves and a potential of V_0 is applied across the length of each half. The total power dissipation across two wires is P_2 . The ratio of $P_2: P_1$ is $\sqrt{x}: 1$. The value of x is _____.
- Q19. When a resistance of 5Ω is shunted with a moving coil galvanometer, it shows a full scale deflection for a current of 250 mA, however when 1050Ω resistance is connected with it in series, it gives full scale deflection for 25 volt. The resistance of galvanometer is Ω .
- Q20. The source of time varying magnetic field may be
 - (A) a permanent magnet
 - (B) an electric field changing linearly with time
 - (C) direct current
 - (D) a decelerating charge particle mathongo
 - (E) an antenna fed with a digital signal


Choose the correct answer from the options given below.

(1) (C) and (E) only

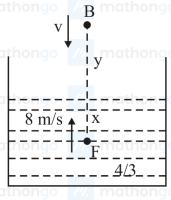
(2) (D) only

(3) (A) only

- (4) (B) and (D) only
- Q21. In the given figure, an inductor and resistor are connected in series with a battery of emf E volt. $\frac{E^a}{2b}$ J s⁻¹ represents the maximum rate at which the energy is stored in the magnetic field (inductor). The numerical value of $\frac{b}{a}$ will be _____.

Q22. Which of the following Maxwell's equation is valid for time varying conditions but not valid for static conditions:

- (1) $\oint \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0 I$ nathongo
- mathongo (2) $\oint \overrightarrow{E} \cdot \overrightarrow{dl} = 0$ /// mathongo /// mathongo
- $(3) \oint \overrightarrow{D} \cdot \overrightarrow{dA} = Q$


(4) $\oint \overrightarrow{E} \cdot \overrightarrow{dl} = -\frac{\partial \phi_B}{\partial t}$

Q23. A vessel of depth d is half filled with oil of refractive index n_1 and the other half is filled with water of refractive index n_2 . The apparent depth of this vessel when viewed from above will be-

 dn_1n_2

(2) $\frac{d(n_1+n_2)}{2n_1n_2}$ (4) $\frac{dn_1n_2}{(n_1+n_2)}$ (4) $\frac{dn_1n_2}{(n_1+n_2)}$

Q24. A fish rising vertically upward with a uniform velocity of 8 m s⁻¹, observes that a bird is diving vertically downward towards the fish with the velocity of 12 m s⁻¹. If the refractive index of water is $\frac{4}{3}$, then the actual velocity of the diving bird to pick the fish, will be_

Q25. The difference between threshold wavelengths for two metal surfaces A and B having work function $\phi_A = 9 \,\mathrm{eV}$ and $\phi_B = 4.5 \,\mathrm{eV}$ in nm is:

{Given, hc = 1242 eV nm}

(1)540

mathongo (2) 276 thongo /// mathongo /// mathongo

(3) 264

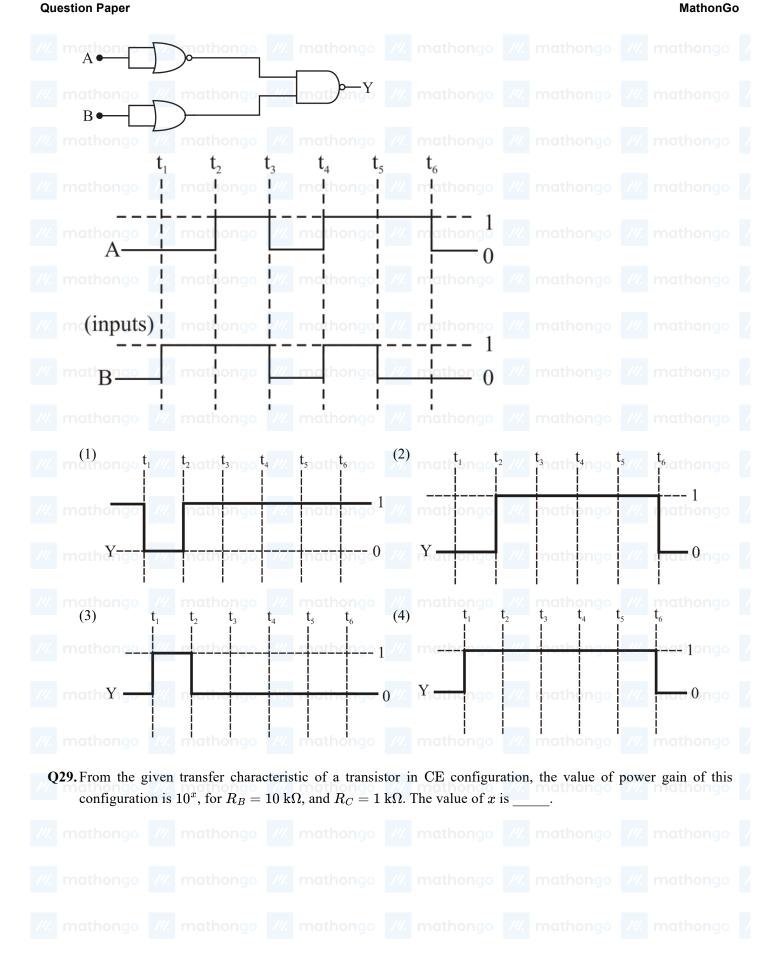
(4) 138

Q26. The radius of 2^{nd} orbit of He⁺ of Bohr's model is r_1 and that of fourth orbit of Be³⁺ is represented as r_2 . Now the ratio $\frac{r_2}{r_1}$ is x:1. The value of x is ______

Q27. $^{238}_{92}$ A $\rightarrow ^{234}_{90}$ B $+ ^{4}_{2}$ D + Q

In the given nuclear reaction, the approximate amount of energy released will be: thomas /// mothonas

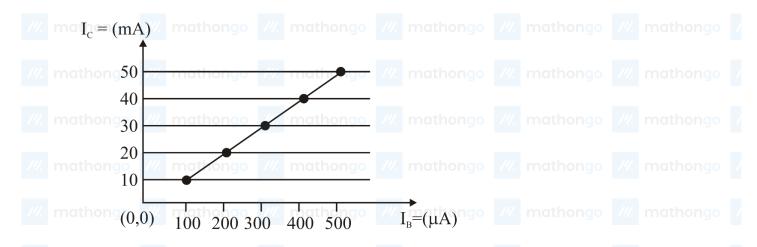
[Given, mass of $^{238}_{92}$ A = 238.05079 × 931.5 MeV $^{-2}$, mass of $^{234}_{90}$ B = 234.04363 × 931.5 MeV $^{-2}$, mass of ${}_2^4\mathrm{D} = 4.00260 \times 931.5\,\mathrm{Me}\,V\,\mathrm{c}^{-2}$] nathongo


 $(1) 3.82 \,\mathrm{MeV}$

 $(2) 5.9 \,\mathrm{MeV}$

 $(3) 2.12 \,\mathrm{MeV}$

 $(4) 4.25 \,\mathrm{MeV}$


Q28. For the following circuit and given inputs A and B, choose the correct option for output $\forall Y'$

JEE Main 2023 (13 Apr Shift 1)

Question Paper

JEE Main Previous Year Paper MathonGo

Q30. Match List-I with List-II

List-I (Layer of atmosphere) List-II (Approximate height over earth's surface)

- (A) F_1 -Layer
- (I) 10 km
- (B) D-Layer
- (II) 170 190 km
- (C) Troposphere
- (III) 100 km
- (D) E-Layer
- (V) 65 75 km

Choose the correct answer from the options given below.

(1) A–II, B–IV, C–I, D–III

(2) A-II, B-IV, C-III, D-I

(3) A-III, B-IV, C-I, D-II

- (4) A-II, B-I, C-IV, D-III
- Q31. An organic compound gives 0. 220 g of CO₂ and 0. 126 g of H₂O on complete combustion. If the % of carbon is 24 then the % of hydrogen is 24×10^{-1} . (Nearest integer)
- Q32. The energy of an electron in the first Bohr orbit of hydrogen atom is -2.18×10^{-18} J Its energy in the third Bohr orbit is_____.
 - $(1) \frac{1}{9}$ th of the value

(2) $\frac{1}{27}$ of this value

- (3) Three times of this value
- (4) One third of this value othors
- Q33. Which of the following statements are not correct?
 - A. The electron gain enthalpy of F is more negative than that of Cl.
 - B. Ionization enthalpy decreases in a group of periodic table.
 - C. The electronegativity of an atom depends upon the atoms bonded to it.
 - D. Al₂ O₃ and NO are examples of amphoteric oxides.

Choose the most appropriate answer from the options given below:

(1) A, B, C and D

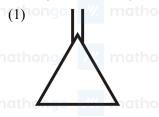
(2) A, B and D only

(3) B and D only mathons

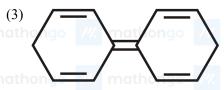
- (4) A, C and D only mathongo mathongo
- Q34. In which of the following processes, the bond order increases and paramagnetic character changes to diamagnetic one?
 - $(1) O_2 \rightarrow O_2^+$
- mathongo /// mathongo (2) $O_2 o O_2^{2-}$ /// mathongo /// mathongo
- (3) NO \rightarrow NO⁺

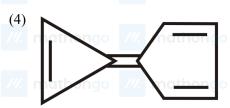
JEE Main 2023 (13 Apr Shift 1)

JEE Main Previous Year Paper


MathonGo


Question Paper


Q35. ClF₅ at room temperature is a


- (1) Colourless liquid with trigonal bipyramidal geometry
- (3) Colourless gas with trigonal bipyramidal geometry
- (2) Colourless gas with square pyramidal geometry
- (4) Colourless liquid with square pyramidal

Q36. Among the following compounds, the one which shows highest dipole moment is

Q37. A certain quantity of real gas occupies a volume of $0.15~\rm dm^3$ at $100~\rm atm$ and $500~\rm K$ when its compressibility factor is 1.07. Its volume at $300~\rm atm$ and $300~\rm K$ (When its compressibility factor is 1.4) is $-2.0000~\rm cm^3$ (Nearest integer)

 $extbf{Q38.}\, ext{A}_2 + ext{B}_2
ightarrow 2\, ext{AB.}\, extstyle \Delta ext{H}_{ ext{f}} = -200\, ext{ kJ}\, ext{ mol}^{-1}$

AB, A_2 and B_2 are diatomic molecules. If the bond enthalpies of A_2 , B_2 and AB are in the ratio1: 0.5: 1, then the bond enthalpy of A_2 is ____kJ mol⁻¹ (Nearest integer)

Q39. 25. 0 mL of 0. 050 M Ba $(NO_3)_2$ is mixed with 25. 0 mL of 0. 020 M NaF. K_{sp} of BaF₂ is 0. 5 × 10–6 at 298K. The ratio of $[Ba^{2+}][F^-]^2$ and K_{sp} is ______.

Q40. KMnO₄ is titrated with ferrous ammonium sulphate hexahydrate in presence of dilute H₂ SO₄. Number of water molecules produced for 2 molecules of KMnO₄ is _____

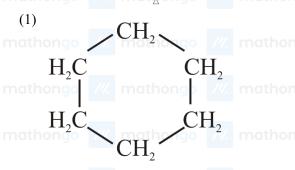
Q41. 20 mL of calcium hydroxide was consumed when it was reacted with 10 mL of unknown solution of H₂ SO₄. Also 20 mL standard solution of 0.5 M HCl containing 2 drops of phenolphthalein was titrated with calcium hydroxide, the mixture showed pink colour when burette displayed the value of 35.5 mL whereas the burette showed 25.5 mL initially. The concentration of H₂ SO₄ is _____M. (Nearest integer)

Q42. Given below are two statements:

Statement I: Permutit process is more efficient compared to the synthetic resin method for the softening of water. What method was method with method water. What method was method water. What method was method water.

Statement II: Synthetic resin method results in the formation of soluble sodium salts.

In the light of the above statements, choose the most appropriate answer from the options given below:


- (1) Both the statements I and II are incorrect
- (2) Statement I is incorrect but statement II is correct
- (3) Both the statements I and II are correct
- (4) Statement I is correct but statement II is incorrect

MathonGo

- Q43. Be $(OH)_2$ reacts with $Sr(OH)_2$ to yield an ionic salt. Choose the incorrect option related to this reaction from the following
 - (1) Both Sr and Be elements are present in the ionic (2) Beis tetrahedrally coordinated in the ionic salt salt
 - (3) The element Be is present in the cationic part of the ionic salt (4) The reaction is an example of acid-base neutralization reaction

Q44. In the following reaction \X\' is

$$\operatorname{CH}_3\left(\operatorname{CH}_2\right)_4\operatorname{CH}_3 \xrightarrow[]{\operatorname{Anhy.AlCl}_3} X_{\operatorname{major\ product}}$$

$$(3) CH3 (CH2)4 CH2 Cl$$

(4)
$$Cl - CH_2 - (CH_2)_4 - CH_2 - Cl$$

- Q45. The radical which mainly causes ozone depletion in the presence of UV radiations is:
 - (1) Cl

(2) NO

(3) OH

- $(4) CH_3$
- Q46. Solution of 12 g of non-electrolyte (A) prepared by dissolving it in 1000 mL of water exerts the same osmotic pressure as that of 0.05 M glucose solution at the same temperature. The empirical formula of A is CH₂O. The molecular mass of A is ______g. (Nearest integer)
- Q47. A metal surface of 100 cm² area has to be coated with nickel layer of thickness 0.001 mm. A current of 2A was passed through a solution of Ni (NO₃)₂ for \x\structure seconds to coat the desired layer. The value of x is _____. (Nearest integer)
 (ρNi (density of Nickel) is 10 g mL⁻¹, Molar mass of Nickel is 60 g mol⁻¹ F = 96500 Cmol⁻¹)
- Q48. $t_{87.5}$ is the time required for the reaction to undergo 87.5% completion and t_{50} is the time required for the reaction to undergo 50% completion. The relation between $t_{87.5}$ and t_{50} for a first order reaction is $t_{87.5} = x \times t_{50}$

The value of x is _____. (Nearest integer)

- Q49. What happens when a lyophilic sol is added to a lyophobic sol?
 - (1) Film of lyophilic sol is formed over lyophobic
- (2) Lyophilic sol is dispersed in lyophobic sol othoro
- (3) Film of lyophobic sol is formed over lyophilic sol
- (4) Lyophobic sol is coagulated mathoned mathoned

Q50. Which one of the following is most likely a mismatch?

m(1) Zinc-Liquation athongo /// mathongo	(2) Copper-Electrolysis mathongo // mathongo //
(3) Nickel-Mond process	(4) Titanium-van Arkel Method
Q51. The incorrect statement from the following for bora	.// mathongo // mathongo // mathongo /
(1) It contains banana bonds	(2) It can react with water
(3) It is a cyclic compound mathongo	(4) It has electronic delocalization mothongo
Q52. The pair of lanthanides in which both elements have (1) Dy, Gd	e high third-ionization energy is:
(3) Eu, Yb mathongo /// mathongo	(4) Eu, Gd /// mathongo /// mathongo ///
Q53. The mismatched combinations are	
A. Chlorophyll–Coathongo B. Water hardness–EDTA	
G D1 . 1 [A (GDT)]=	
C. Photography—[Ag(CN) ₂] D. Wilkinson catalyst—[(Ph ₃ P) ₃ RhCl]	
E. Chelating ligand–D–Penicillamine	
Choose the correct answer from the options given b	
(1) A, C and E only	(2) A and C only
(3) A and E only	(4) D and E only
	d gives \A/ whereas on reaction with C ₂ H ₅ OH it gives \B/.
The mechanism followed in these reactions and the	
The mechanism followed in these reactions and the $(1) \ S_N 2, A = \text{iso-butyl ethyl ether}; S_N 1, B = \text{tert-but},$ ethyl ether $(3) \ S_N 2, \ A = 2 - \text{butyl ethyl ether}; S_N 2, \ B = \text{iso-}$	products A and B respectively are: $yl(2) \ S_N 1, \ A = \text{tert-butyl ethyl ether}; \ S_N 1, \ B = 2 - \\ \text{butyl ethyl ether}$ $(4) \ S_N 1, \ A = \text{tert-butyl ethyl ether}; \ S_N 2, \ B = \text{iso-}$
The mechanism followed in these reactions and the (1) $S_N 2$, A =iso-butyl ethyl ether; $S_N 1$, B =tert-but ethyl ether (3) $S_N 2$, $A = 2$ -butyl ethyl ether; $S_N 2$, B =iso-butyl ethyl ether Q55. In the reaction given below	products A and B respectively are: $yl(2) S_N 1$, A =tert-butyl ethyl ether; $S_N 1$, $B = 2$ — butyl ethyl ether (4) $S_N 1$, A =tert-butyl ethyl ether; $S_N 2$, B =isobutyl ethyl ether $yl(2) S_N 1$, $yl($
The mechanism followed in these reactions and the (1) $S_N 2$, A =iso-butyl ethyl ether; $S_N 1$, B =tert-but ethyl ether (3) $S_N 2$, $A = 2$ -butyl ethyl ether; $S_N 2$, B =iso-butyl ethyl ether Q55. In the reaction given below	products A and B respectively are: $yl(2) S_N 1$, A =tert-butyl ethyl ether; $S_N 1$, $B = 2$ —butyl ethyl ether $(4) S_N 1$, A =tert-butyl ethyl ether; $S_N 2$, B =isobutyl ethyl ether $(4) S_N 1$, (4)
The mechanism followed in these reactions and the $(1) S_N 2, A = \text{iso-butyl ethyl ether}; S_N 1, B = \text{tert-but} $ ethyl ether $(3) S_N 2, A = 2 - \text{butyl ethyl ether}; S_N 2, B = \text{iso-butyl ethyl ether}$ Q55. In the reaction given below $(i) HCl$ $(ii) KOH Maj$	products A and B respectively are: $yl(2) S_N 1$, A =tert-butyl ethyl ether; $S_N 1$, $B = 2$ — butyl ethyl ether (4) $S_N 1$, A =tert-butyl ethyl ether; $S_N 2$, B =isobutyl ethyl ether $yl(2) S_N 1$, $yl($
The mechanism followed in these reactions and the (1) $S_N 2$, A =iso-butyl ethyl ether; $S_N 1$, B =tert-but ethyl ether (3) $S_N 2$, $A = 2$ -butyl ethyl ether; $S_N 2$, B =iso-butyl ethyl ether Q55. In the reaction given below (i) HCl (ii) KOH Maj	products A and B respectively are: $yl(2) S_N 1$, A =tert-butyl ethyl ether; $S_N 1$, $B = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$
The mechanism followed in these reactions and the (1) $S_N 2$, $A = iso$ -butyl ethyl ether; $S_N 1$, $B = tert$ -but ethyl ether (3) $S_N 2$, $A = 2$ -butyl ethyl ether; $S_N 2$, $B = iso$ -butyl ethyl ether Q55. In the reaction given below (i) HCl (ii) HCl (ii) HCl (iii) HCl	products \A/ and \B/ respectively are: yl(2) S _N 1, A =tert-butyl ethyl ether; S _N 1, B = 2— butyl ethyl ether (4) S _N 1, A =tert-butyl ethyl ether; S _N 2, B =iso- butyl ethyl ether mathongo mathongo 'B' for product mathongo mathong
The mechanism followed in these reactions and the (1) $S_N 2$, $A = iso$ -butyl ethyl ether; $S_N 1$, $B = tert$ -but ethyl ether (3) $S_N 2$, $A = 2$ -butyl ethyl ether; $S_N 2$, $B = iso$ -butyl ethyl ether (255. In the reaction given below (i) HCl (ii) HCl (iii) HC	products \A/ and \B/ respectively are: yl(2) S _N 1, A =tert-butyl ethyl ether; S _N 1, B = 2— butyl ethyl ether (4) S _N 1, A =tert-butyl ethyl ether; S _N 2, B =iso- butyl ethyl ether // mathongo // mathongo // 'B' for product // mathongo // mathongo // mathongo // mathongo // mathongo // // mathongo // mathongo // mathongo // // mathongo // mathongo // mathongo //

MathonGo

m(1)nono

(3)

(2) mat NH₂

(4) NH_{2}

In the above reaction, left hand side and right hand side rings are named as \A\t and \B\t respectively. They undergo ring expansion. The correct statement for this process is: (2) Finally both rings will become six membered

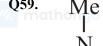
- (1) Ring expansion can go upto seven membered rings
- each. (4) Only A will become 6 membered.
- (3) Finally both rings will become five membered each.
- Q57. For the given reaction hongs /// mathongs /// mathongs /// mathongs mathongo _____ mathongo _____ $\Delta_{\prime\prime}$ mathongo $\prime\prime\prime$

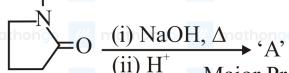
CH₃ OH Η

The, total number of possible products formed by tertiary carbocation of A is__

JEE Main 2023 (13 Apr Shift 1)

JEE Main Previous Year Paper MathonGo

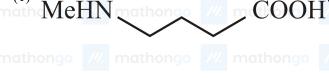

Question Paper

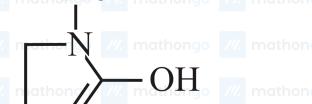

 $Q58._{D-(+)}-Glyceraldehyde \xrightarrow{i) HCN}$ mathongo /// mathongo /// mathongo

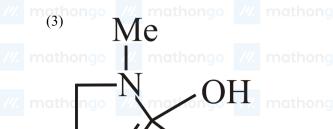
- The products formed in the above reaction are
- (1) One optically active and one meso product
- (2) Two optically inactive products

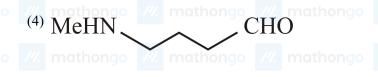
(3) Two optically active products

(4) One optically inactive and one meso product









Q60. Match the following

Choose the correct answer from options given below:

(1)
$$a \rightarrow III, \ b \rightarrow II, \ c \rightarrow I, \ d \rightarrow IV$$

(3) a
$$\rightarrow$$
 IV, b \rightarrow III, c \rightarrow II, d \rightarrow I

(4)
$$a \rightarrow II, \ b \rightarrow III, \ c \rightarrow IV, \ d \rightarrow I$$

Q61. Let $w=z\overline{z}+k_1z+k_2iz+\lambda(1+i), k_1,k_2\in\mathbb{R}$. Let Re(w)=0 be the circle C of radius 1 in the first quadrant touching the line y = 1 and the y-axis. If the curve Im(w) = 0 intersects C at A and B, then $30(AB)^2$ is equal to <u>thouse</u>. // mathongo // mathongo // mathongo //

Q62. The number of seven digit positive integers for equal to 12 is	med using the digits 1,2,3 and 4 only and sum of the digits
and the common differences are 1, 3, 5,, 19 (1) 7220 (3) 7260	(2) 7360 (4) 7380 (4) 7380 (2) (5)
Q64. The sum to 20 terms of the series $2 \cdot 2^2 - 3^2 + 2$	\cdot 4 2 - 5 2 + 2 \cdot 6 2 is equal to
(1) 8	mathongo /// mathongo
Q66. Let α be the constant term in the binomial expan	sion of $\left(\sqrt{x} - \frac{6}{x^{\frac{3}{2}}}\right)^n$, $n \le 15$. If the sum of the coefficients
	and the coefficient of x^{-n} is $\lambda \alpha$, then λ is equal to
axis. Let the ordinate of P be positive an $PM: MQ = 3:1$. Then which of the following perpendicular to the line PQ ? (1) $(-6,45)$ (3) $(3,33)$	6x of length 100, making an acute angle with the positive $x-$ d M be the point on the line segment PQ such that any points does NOT lie on the line passing through M and (2) $(6,29)$ (4) $(-3,43)$
Q68. Let the tangent and normal at the point $(3\sqrt{3}, 1)$) on the ellipse $\frac{x^2}{36} + \frac{y^2}{4} = 1$ meet the $y-$ axis at the points A
and B respectively. Let the circle C be drawn to	king AB as a diameter and the line $x=2\sqrt{5}$ intersect C at the and Q on the circle intersect at the point (α,β) , then $\alpha^2-\beta^2$ is
mequal to mathong mathong (1) 61	
	we from the point $P(4,1)$ to the hyperbola $H: \frac{y^2}{25} - \frac{x^2}{16} = 1$ we to H have slopes $ m_1 $ and $ m_2 $ and they make positive equal to
Q70. The negation of the statement $((A \land (B \lor C)) \Rightarrow$	$(A \lor B) \Rightarrow A \text{ is}$ mathongo mathongo
	(2) equivalent to $B \vee {}^{\sim}C$ (4) equivalent to ${}^{\sim}A$
Q71. Let the mean of the dataongo /// mothong	
	$1 3 \qquad \qquad 5 \qquad \qquad 7 \qquad \qquad 9$
	4 24 mat 28 ngo α' 18 athongo // mathongo
	iation about the mean and the variance of the data, then $\frac{3\alpha}{m+\sigma^2}$
/// m is equal tothongo /// mothong	

MathonGo

Question Paper

- Q72. The number of symmetric matrices of order 3, with all the entries from the set $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is
 - $(1) 6^{10}$

- $m(3) 9^{10}$ go /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///
- Let $B = \begin{bmatrix} 1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4 \end{bmatrix}$, $\alpha > 2$ be the adjoint of a matrix A and |A| = 2. Then $\begin{bmatrix} \alpha & -2\alpha & \alpha \end{bmatrix} B \begin{bmatrix} \alpha \\ -2\alpha \end{bmatrix}$ is equal to
 - m(1) 0 ngo /// mathongo /// mathongo /// mathongo /// mathongo ///

- Q74. For the system of linear equations mathongo mathongo
 - 2x + 4y + 2az = b
 - mx+2y+3z = 4 mathongo ///. mathongo ///. mathongo ///. mathongo ///.
 - 2x + 5y + 2z = 8
 - m which of the following is NOT correct? athongo /// mathongo /// mathongo /// mathongo
 - (1) It has unique solution if a = b = 6
- (2) It has infinitely many solutions if a = 3, b = 6
- (3) It has infinitely many solutions if a = 3, b = 8 (4) It has unique solution if a = b = 8
- Q75. If $S = \left\{ x \in \mathbb{R} : \sin^{-1}\left(\frac{x+1}{\sqrt{x^2+2x+2}}\right) \sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right) = \frac{\pi}{4} \right\}$ then $\sum_{x \in S} \left(\sin\left(\left(x^2 + x + 5\right) \frac{\pi}{2}\right) \cos\left(\left(x^2 + x + 5\right) \pi\right) \right)$ is equal to _____.
- **Q76.** For $x \in \mathbb{R}$, two real valued functions f(x) and g(x) are such that, $g\left(x\right) = \sqrt{x} + 1$ and $fog(x) = x + 3 \sqrt{x}$. Then f(0) is equal to

- **Q77.** For the differentiable function $f: \mathbb{R}-\{0\}-\mathbb{R}$, let $3f(x)+2f\left(rac{1}{x}
 ight)=rac{1}{x}-10$, then $\left|f(3)+f'\left(rac{1}{4}
 ight)
 ight|$ is equal

 - $(1)\frac{33}{5}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

- Mathongo // matho

- (1) $\frac{\pi+2-3\sqrt{3}}{6}$ // mathongo // math

- **Q79.** The set of all $a \in \mathbb{R}$ for which the equation x|x-1|+|x+2|+a=0 has exactly one real root, is $(1) (-7, \infty)$ (3) (-6, -3) $(4) (-\infty, -3)$ $(5) (-\infty, \infty)$ $(6) (-\infty, \infty)$ $(7) (-\infty, \infty)$ $(8) (-\infty, -3)$ $(8) (-\infty, -3)$ $(8) (-\infty, -3)$ $(9) (-\infty, \infty)$ $(9) (-\infty,$

- **Q80.** $\int_0^\infty \frac{6}{e^{3x} + 6e^{2x} + 11e^x + 6} dx =$ (2) $\log_e(\frac{512}{81})$

- (3) $\log_e\left(\frac{256}{81}\right)$ mathons (4) $\log_e\left(\frac{302}{27}\right)$ mathons (5) mathons (7)
- Q81. Among

 - $(S1): \lim_{n o\infty}rac{1}{n^2}\Big(2+4+6+\ldots+2n\Big)=1$ and we mathongo we mathongo we mathongo we mathongo with mathongo we have n=1

$(S2): \lim_{n o \infty} rac{1}{n^{16}} ig(1^{15} + 2^{15} + 3^{15}ig)$	$(n^{15} + \ldots + n^{15}) = \frac{1}{16}$				
---	---	--	--	--	--

(1) Both (S1) and (S2) are true

(2) Only (S1) is true

- (3) Both (S1) and (S2) are false
- $^{\prime\prime}$ mathongo $^{\prime\prime}$ (4) Only (S2) is true $^{\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo

Q82. Let for
$$x \in \mathbb{R},\ S_0(x) = x,\ S_k(x) = C_k x + k \int_0^x S_{k-1}(t) dt$$
 where $C_0 = 1,\ C_k = 1 - \int_0^1 S_{k-1}(x) dx,\ k = 1,2,3,\ldots$ Then $S_2(3) + 6C_3$ is equal to _____.

- **Q83.** The area of the region enclosed by the curve $f(x) = \max\{\sin x, \cos x\}, -\pi \le x \le \pi$ and the x-axis is (1) $2\sqrt{2}(\sqrt{2}+1)$
 - m (3) $4(\sqrt{2})$ mathongo mathongo (4) $2(\sqrt{2}+1)$ mathongo mathon
- **Q84.** Let $y=y_1(x)$ and $y=y_2(x)$ be the solution curves the differential equation $\frac{dy}{dx}=y+7$ with initial conditions $y_1(0)=0$ and $y_2(0)=1$ respectively. Then the curves $y=y_1(x)$ and $y=y_2(x)$ intersect at
 - (1) no point
- mathongo /// mathongo (2) two points
- (3) one point

- (4) infinite number of points
- **Q85.** Let $\overrightarrow{a} = \hat{\textbf{i}} + 4\hat{\textbf{j}} + 2\widehat{\textbf{k}}, \overrightarrow{b} = 3\hat{\textbf{i}} 2\hat{\textbf{j}} + 7\widehat{\textbf{k}}$ and $\overrightarrow{c} = 2\hat{\textbf{i}} \hat{\textbf{j}} + 4\widehat{\textbf{k}}$. If a vector \overrightarrow{d} satisfies $\overrightarrow{d} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$ and $\overrightarrow{d} \cdot \overrightarrow{a} = 24$, then d^2 is equal to mathongo mathongo mathongo mathongo mathongo
 - (1) 323

- m(3) 313_{yo} /// mathongo /// mathongo /// mathongo /// mathongo ///
- **Q86.** Let $\overrightarrow{a} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} \hat{\mathbf{k}}$ and $\overrightarrow{c} = 2\hat{\mathbf{i}} 3\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$. If \overrightarrow{b} is a vector such that $\overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{c}$ and $|\overrightarrow{b}|^2 = 50$, then $\left| \frac{72 - \left| \overrightarrow{b} + \overrightarrow{c} \right|^2}{b} \right|$ is equal to _____. mathongo /// mathongo /// mathongo /// mathongo
- Q87. Let the equation of plane passing through the line of intersection of the planes x + 2y + az = 2 and x-y+z=3 be 5x-11y+bz=6a-1. For $c\in\mathbb{Z}$, if the distance of this plane from the point (a,-c,c) is $\frac{2}{\sqrt{a}}$, then $\frac{a+b}{c}$ is equal to $\binom{\sqrt{u}}{(1)}$ 2 ngo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo

- Q88. The distance of the point (-1,2,3) from the plane $\overrightarrow{r} \cdot \left(\hat{i}-2\hat{j}+3\widehat{k}\right)=10$ parallel to the line of the shortest distance between the lines $\overrightarrow{r} = (\hat{i} - \hat{j}) + \lambda (2\hat{i} + \widehat{k})$ and $\overrightarrow{r} = (2\hat{i} - \hat{j}) + \mu (\hat{i} - \hat{j} + \widehat{k})$ is ______ mathongo

- $(3) 2\sqrt{6}$
- mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- **Q89.** Let the image of the point $\left(\frac{5}{3}, \frac{5}{3}, \frac{8}{3}\right)$ in the plane x 2y + z 2 = 0 be P. If the distance of the point $Q(6, -2, \alpha), \alpha > 0$, from P is 13, then α is equal to _____.

JEE Main 2023 (13 Apr Shift 1) Question Paper

JEE Main Previous Year Paper

MathonGo

O90. A coin is biased so that the head is 3 times as likely to occur as tail. This coin is tossed until a head or three

Q90. A coin is biased so that the head is 3 times as likely to occur as tail. This coin is tossed until a head or three tails occur. If X denotes the number of tosses of the coin, then the mean of X is											
							$\frac{15}{16}$ athongo				

JEE	wain	2023	(13 Apr	Snitt	1
Ques	stion P	aper			

ANSWER	KEYS	matmongo	///.	methorigo	///.		go <i>74.</i>	mathongo	//.	mamongo
1. (3) _{nothon}	2. (2)//	mat 3. (1)		4. (4) nongo	5. (2)	mathon	6. (1) ///	ma 7. (2)go		8. (1) hongo
9. (3)	10. (3)	11. (2)		12. (4)	13. (3)	14. (2)	15. (4)		16. (2)
17. (4) othor	18. (4)	19. (1)		20. (1)	21. (4)nathon	22. (40)	23. (4)		24. (6)
25. (16)	26. (50)	27. (25)		28. (3)	29. (2) mathan	30. (3)	31. (3)		32. (4) mgthongo
33. (3)	34. (4)	35. (4)		36. (1)	37. (3)	38. (2)	39. (1)		40. (1)
41. (1) athor	42. (1)	43. (3)		44. (2)	45. (1) hathon	46. (4)	47. (2)		48. (1)
49. (1)	50. (1)	51. (56)		52. (392)	53. (800)	54. (5)	55. (68)		56. (1)
57. (240) hon	58. (16)	59. (3)		60. (5) ongo	`	,	62. (4)	63. (4)		64. (3) ongo
65. (4)	66. (2)	67. (3)		68. (2)	69. (mathon	70. (4)	71. (4)		72. (2)
73. (1)	74. (1)	75. (2)		76. (1)	77. (78. (3)	79. (3)		80. (3)
81. (24)	82. (413)	83. (1310)/4.	84. (36)	85. (8) mathon	86. (8)	87. (4)		88. (18) mathongo
89. (66)	90. (15)									