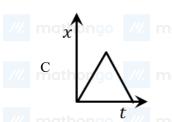
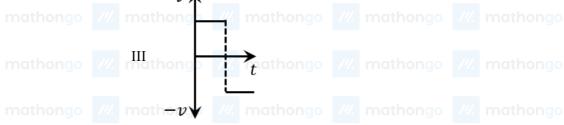

- Q1. Electric field in a certain region is given by $\vec{E} = \frac{A}{x^2}\hat{i} + \frac{B}{y^3}\hat{j}$. The SI unit of A and B are:

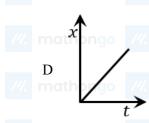
- (1) N m³ C⁻¹; N m² C⁻¹ (2) N m² C⁻¹; N m³ C⁻¹ (3) N m³ C; N m² C mathons (4) N m² C; N m³ C mathons (7) mathons (8) $\frac{1}{2}$ $\frac{1}$
- Q2. Match Column-I with Column-II: mathongo mathongo mathongo mathongo mathongo

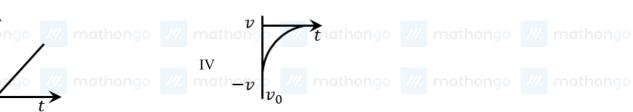
Column-I (x-t graphs)

Column-II (v-t graphs)

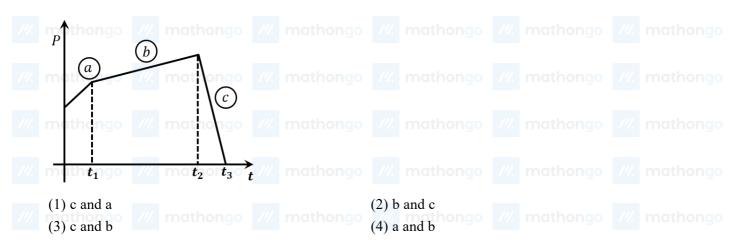




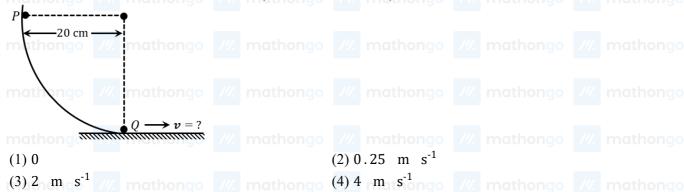




- Choose the correct answer from the options given below:


(1) A- II B-IV, C-III, D-I

(2) A- I. B-II, C-III, D-IV


- (3) A- II B-III, C-IV, D-Inongo /// mathongo (4) A- I, B-III. C-IV, D-II mathongo /// mathongo
- Q3. The figure represents the momentum time (p-t) curve for a particle moving along an axis under the influence of the force. Identify the regions on the graph where the magnitude of the force is maximum and minimum respectively? If $t_3 - t_2 < t_1$ ///. mathongo ///. mathongo ///. mathongo ///. mathongo

JEE Main 2023 (30 Jan Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

Q4. As per the given figure, a small ball P slides down the quadrant of a circle and hits the other ball Q of equal mass which is initially at rest. Neglecting the effect of friction and assume the collision to be elastic, the velocity of ball Q after collision will be: $(g = 10 \text{ m s}^{-2})$

Q5. A ball of mass 200 g rests on a vertical post of height 20 m. A bullet of mass 10 g, travelling in horizontal direction, hits the centre of the ball. After collision both travels independently. The ball hits the ground at a distance 30 m and the bullet at a distance of 120 m from the foot of the post. The value of initial velocity of the bullet will be (if g = 10 m s⁻²): mathongo // mathongo // mathongo //

 $(1) 120 \text{ m s}^{-1}$

 $(2) 60 \text{ m s}^{-1}$

- (3) 400 m s⁻¹/mathongo ///mathongo (4) 360 m s⁻¹/mathongo ///mathongo

Q6. If the gravitational field in the space is given as $-\frac{K}{r^2}$. Taking the reference point to be at r=2 cm with gravitational potential V=10 J kg⁻¹. Find the gravitational potentials at r=3 cm in SI unit (Given, that K = 6 J cm kg⁻¹) (1) 9 hongo /// mathongo /// mathongo /// mathongo /// mathongo

(3) 12

(4) 10

Q7. Choose the correct relationship between Poisson ratio σ , bulk modulus (K) and modulus of rigidity η of a given solid object:

(1) $\sigma = \frac{3K - 2\eta}{6K + 2\eta}$ (3) $\sigma = \frac{3K - 2\eta}{6K + 2\eta}$

(2) $\sigma = \frac{6K + 2\eta}{3K - 2\eta}$ (4) $\sigma = \frac{6K - 2\eta}{3K - 2\eta}$

Q8. The height of liquid column raised in a capillary tube of certain radius when dipped in liquid A vertically is, 5 cm. If the tube is dipped in a similar manner in another liquid B of surface tension and density double the

JEE Main Previous Year Paper

Question Paper MathonGo

	values of liquid A, the height of liquid column raised	in liquid B would be	14.	m m.hongo		
	(1) 0.20	(2) 0.5				
	(3) 0.05 ₁₉₀ ///. mathongo ///. mathongo	(4) 0.10 thongo				
Q9	. Heat is given to an ideal gas in an isothermal process.					
	A. Internal energy of the gas will decrease.					
	B. Internal energy of the gas will increase.					
	C. Internal energy of the gas will not change.					
	D. The gas will do positive work.					
	E. The gas will do negative work.					
	Choose the correct answer from the options given bel	ow:				
	(1) A and E only mathongo // mathongo	(2) B and D only				
	(3) C and E only	(4) C and D only				
61	0. The pressure (P) and temperature (T) relationship	in of an ideal gas obe	we th	e equation PT ²	<u> </u>	onstant The
Ų	volume expansion coefficient of the gas will be:	ip of all facal gas obe	ys in	e equation 1 1		onstant. The
	(1) $3T^2$ mathongo mathongo	$\frac{3}{2}$ mathonao				
		$(2) \frac{3}{T^2}$ $(4) \frac{3}{T}$				
	$(3) \frac{3}{T^3}$ mathongo /// mathongo /// mathongo	$\frac{(4)}{T}$ mathongo				
01	1. Two isolated metallic solid spheres of radii R and 2R				harge	density σ .
,,,,	The spheres are then connected by a thin conducting	_				
	The ratio $\frac{\sigma}{}$ is:	mathongo	J	mænongo		mathongo
	σ	$(2)^{\frac{4}{}}$				
	$n(1) \frac{9}{4}$ ongo ///. mathongo ///. mathongo	$(2) \frac{3}{3}$ mathongo				
	$(3)\frac{3}{3}$	$(4)\frac{1}{6}$				
Q1	2. The charge flowing in a conductor changes with tim	e as $Qt = \alpha t - \beta t^2 +$	γt^3 ,	where α , β and	ndγa	are constants.
	Minimum value of current is:					
	$(1)_{\alpha} - \frac{3\beta^2}{2}$ /// mathongo /// mathongo	(2) $\alpha - \frac{\gamma^2}{2}$ though				
	(3) $\beta = \frac{\alpha^2}{3\gamma}$	3β				
	(1) $\alpha - \frac{3\beta^2}{\gamma}$ mathongo // mathongo // (3) $\beta - \frac{\alpha^2}{3\gamma}$ // mathongo // mathongo	$(4) \alpha - \frac{\beta}{3\gamma}$ though				
Ω1	3. A massless square loop, of wire of resistance 10 Ω	supporting a mass of	f 1	σ hangs vertice	ally w	with one of its
74.	sides in a uniform magnetic field of 10 ³ G, directe					
	to the loop. For what value of V , the magnetic force			_	_	
	1 g? ngo /// mathongo /// mathongo			_		_
	(If sides of the loop = 10 cm, $g = 10$ m s ⁻²					
	mathongo ///. mathongo					
	mathongo /// mathongo /// mathongo					
	I T V					

JEE Main Previous Year Paper

Question Paper MathonGo

- $r(1)\frac{1}{10}V_{100}$ /// mathongo /// mathongo (2) 100 v₁ V₁ V₂ O₁ /// mathongo /// mathongo
- Q14. The magnetic moments associated with two closely wound circular coils A and B of radius

 $r_A = 10$ cm and $r_B = 20$ cm respectively are equal if: (Where N_A , I_A and N_B , I_B are number of turn and current of A, and B respectively) turn and current of A and B respectively)

(1) $2N_A I_A = N_B I_B$

- $(3) N_A I_A = 4N_B I_B \text{ mathongo } \text{ ma$

Q15. In a series LR circuit with $X_L = R$, power factor is P_1 . If a capacitor of capacitance C with $X_C = X_L$ is added to the circuit the power factor becomes P_2 . The ratio of P_1 to P_2 will be :

- (1) 1:3
- mathongo /// mathongo (2) $1:\sqrt{2}$ (4) 1:2 mathongo /// mathongo
- (3) 1:1

Q16. A person has been using spectacles of power -1.0 diopter for distant vision and a separate reading glass of power 2.0 diopters. What is the least distance of distinct vision for this person:

- (1) 10 cm
- mathongo /// mathongo (2) 40 cm ongo /// mathongo /// mathongo
- (3) 30 cm

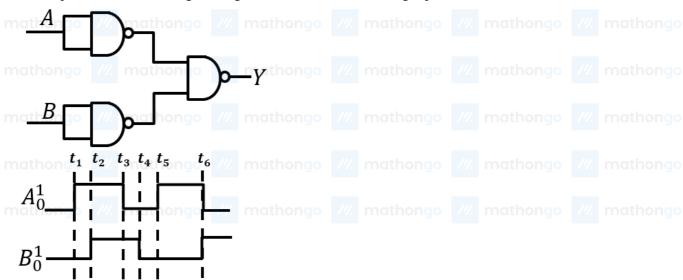
Q17. A small object at rest, absorbs a light pulse of power 20 mW and duration 300 ns. Assuming speed of light as 3 \times 10⁸ m s⁻¹. The momentum of the object becomes equal to :

 $m(1) 0.5 \times 10^{-17}$ kg m s⁻¹ mathongo (2) 2×10^{-17} kg m s⁻¹ mathongo // mathongo

Inputs

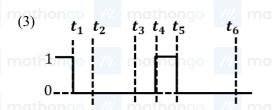
(3) 3×10^{-17} kg m s⁻¹

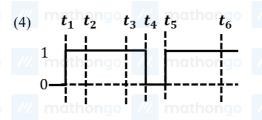
(4) 1×10^{-17} kg m s⁻¹


Q18. Speed of an electron in Bohr's 7^{th} orbit for Hydrogen atom is $3.6 \times 10^6 \text{ m} \text{ s}^{-1}$. The corresponding speed of the electron in 3rd orbit, in m s⁻¹ is: (2) 7.5 \times 10⁶ go /// mathongo /// mathongo

 $(1) 1.8 \times 10^6$

 $(3) 3.6 \times 10^6$


 $(4) 8.4 \times 10^6$

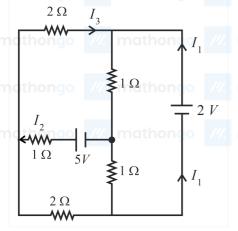

Q19. The output waveform of the given logical circuit for the following inputs A and B as shown below, is

 $(1) \qquad t_1 \quad t_2 \qquad t_3 \quad t_4 \quad t_5$

Q20. A sinusoidal carrier voltage is amplitude modulated. The resultant amplitude modulated wave has maximum and minimum amplitude of 120 V and 80 V respectively. The amplitude of each side band is:

mathongo
$$\frac{(2)\ 10\ V}{(4)\ 5\ W}$$
 mathongo $\frac{(2)\ 10\ V}{(4)\ 5\ W}$ mathongo $\frac{(2)\ 10\ V}{(4)\ 5\ W}$ mathongo

Q21. A horse rider covers half the distance with 5 m s⁻¹ speed. The remaining part of the distance was travelled with speed 10 m s⁻¹ for half the time and with speed 15 m s⁻¹ for other half of the time. The mean speed of the rider averaged over the whole time of motion is $\frac{x}{7}$ m s⁻¹. The value of x is _____.


Q22. A thin uniform rod of length 2 m, cross sectional area A and density d is rotated about an axis passing through the centre and perpendicular to its length with angular velocity ω . If value of ω in terms of its rotational kinetic energy E is $\sqrt{\frac{\alpha E}{Ad}}$, then the value of α is _____.

mathons /// mathons /// mathons /// mathons /// mathons

Q23. The general displacement of a simple harmonic oscillator is x = A sin ωt . Let T be its time period. The slope of its potential energy (U) – time (t) curve will be maximum when $t = \frac{T}{\beta}$. The value of β is ______.

Q24. A capacitor of capacitance 900 µ F is charged by a 100 V battery. The capacitor is disconnected from the battery and connected to another uncharged identical capacitor such that one plate of uncharged capacitor connected to positive plate and another plate of uncharged capacitor connected to negative plate of the charged capacitor. The loss of energy in this process is measured as $x \times 10^{-2}$ J. The value of x is

Q25. In the following circuit, the magnitude of current I_1 , is _____ A. ____ Mathongo

Q26. As per the given figure, if $\frac{dI}{dt} = -1$ A s⁻¹, then the value of V_{AB} at this instant will be ______ V.

Q27. In an experiment for estimating the value of focal length of converging mirror, image of an object placed at 40 cm from the pole of the mirror is formed at distance 120 cm from the pole of the mirror. These distances are measured with a modified scale in which there are 20 small divisions in 1 cm. The value of error in measurement of focal length of the mirror is $\frac{1}{K}$ cm. The value of K is _____.

Q28. In Young's double slit experiment, two slits S_1 and S_2 are d distance apart and the separation from slits to screen is D (as shown in figure). Now if two transparent slabs of equal thickness 0.1 mm but refractive index 1.51 and 1.55 are introduced in the path of beam $\lambda = 4000$ Å from S_1 and S_2 respectively. The central bright fringe spot will shift by _____ number of fringes.

Q29. A point source of light is placed at the centre of curvature of a hemispherical surface. The source emits a power of 24 W. The radius of curvature of hemisphere is 10 cm and the inner surface is completely reflecting. The force on the hemisphere due to the light falling on it is _____ × 10⁻⁸ N.

Q30. In a screw gauge, there are 100 divisions on the circular scale and the main scale moves by 0.5 mm on a complete rotation of the circular scale. The zero of circular scale lies 6 divisions below the line of graduation when two studs are brought in contact with each other. When a wire is placed between the studs, 4 linear scale divisions are clearly visible while 46th division the circular scale coincide with the reference line. The diameter of the wire is _____ × 10⁻² mm.

Q31. Match List - I with List - II

LIST-I (Atomic num		LIST-I	mathongo // II c of periodic		
(A)	37	I.	p-block		
(B)	78	II.	d-block		

(3) LiCl, Al and H₂

JEE Main Previous Year Paper MathonGo

Question Paper

(D) 65 IV. s-block Choose the correct answer from the options given below: mathons (1) A · II, B · IV, C · I, D · III (3) A · IV, B · III, C · II, D · I (3) A · IV, B · III, C · II, D · I (4) A · IV, B · III, C · IV, D · III (5) A · IV, B · III, C · IV, D · III (6) A · IV, B · III, C · IV, D · III (7) A · IV, B · III, C · IV, D · III (8) A · IV, B · III, C · IV, D · III (9) A · IV, B · III, C · IV, D · III (1) C · Oxidation state of 0 is · 2. (1) Molecular geometry is linear. Correct options are: (1) C · D, E only mathons (2) B, E, A only (3) A, C, D only (4) A, B, D only (3) A, C, D only (4) A, B, D only (3) A, C, D only (8) A, B, D only (4) A, B, D only mathons (8) mathons (9) mathons (9	/// n(C)hongo	//. 52athongo	III.	ma f-block				
(1) A - II, B - IV, C - I, D - III (2) A - IV, B - III, C - IV, D - II (3) A - IV, B - III, C - II, D - I (4) A - IV, B - II, C - I, D - III (3) A - IV, B - III, C - II, D - I (4) A - IV, B - II, C - I, D - III (5) A - IV, B - III, C - IV, D - III (6) A - IV, B - III, C - IV, D - III (7) A - IV, B - III, C - IV, D - III (8) A - IV, B - III, C - IV, D - III (9) A - IV, B - III, C - IV, D - III (10) A - IV, B - III, C - IV, D - III (11) A - IV, B - III, C - IV, D - III (12) A - IV, B - III, C - II, D - III (13) A - IV, B - III, C - IV, D - III (14) A - IV, B - III, C - II, D - III (15) A - IV, B - III, C - IV, D - III (15) A - IV, B - III, C - II, D - III (16) A - IV, B - III, C - II, D - III (17) A - IV, B - III, C - IV, D - IIII (18) MgSO ₄ (19) SrSO ₄ (10) SrSO ₄ (10) SrSO ₄ (10) SrSO ₄ (11) BaSO ₄ (11) BaSO ₄ (11) Muthors of lone pairs of example of the pairs of example of	(D)	65	IV.	s-block				
Q32. For OF ₂ molecule consider the following: (A) Number of lone pairs on oxygen is 2. (B) FOF angle is less than 104. 5°. (C) Oxidation state of O is -2. (D) Molecule is bent 'V' shaped. (E) Molecular geometry is linear. Correct options are: (1) C, D, E only methods (4) A, B, D only Q33. Match List I with List II List II List II (No. of lone pairs of e on central atom) (A) IF ₇ I. One (B) ICI ₄ II. One (C) XeF ₆ III. Two (D) XeF ₂ IV. Zero Choose the correct answer from the options given below: (1) A - II, B - III, C - IV, D - III (3) A - II, B - II, C - IV, D - III (3) A - II, B - II, C - IV, D - IIII (3) A - II, B - II, C - IV, D - IIII (3) MgSO ₄ (b) MgSO ₄ (c) CaSO ₄ (d) D SrSO ₄ (e) D SrSO ₄ (f) BaSO ₄ (mathods) Mathods (d) A - IV, B - III, C - II, D - III mathods (d) A - IV, B - III, C - III, D - III mathods (d) D SrSO ₄ (e) D SrSO ₄ (f) BaSO ₄ (f) BaSO ₄ (g) MgSO ₄ (g) CaSO ₄ (g) SrSO ₄ (h) BaSO ₄ (h)	Choose the c	orrect answer from	n the	options given b	elow: mathon			
Q32. For OF ₂ molecule consider the following: (A) Number of lone pairs on oxygen is 2. (B) FOF angle is less than 104. 5°. (C) Oxidation state of 0 is -2. (D) Molecule is bent 'V' shaped. (E) Molecular geometry is linear. Correct options are: (1) C, D, E only mathons m	(1) A - II, B -	IV, C - I, D - III			(2) A - I, B - III	, C - IV,	D - II	
(A) Number of lone pairs on oxygen is 2. (B) FOF angle is less than 104.5°. (C) Oxidation state of 0 is -2. (D) Molecule is bent 'V' shaped. (E) Molecular geometry is linear. Correct options are: (1) C, D, E only (3) A, C, D only (4) A, B, D only Q33. Match List I with List II (No. of lone pairs of e' on central atom) (A) on IF7	/// (3) A - IV, B	- III, C - II, D - I			(4) A - IV, B - I	I, C - I,	D ₁ -III hongo	
(A) National of this past of toxics and the second of the	Q32. For OF ₂ mole	ecule consider the	follow	ing:				
(C) Oxidation state of 0 is -2. (D) Molecule is bent V' shaped. (E) Molecular geometry is linear. Correct options are: (1) C, D, E only (3) A, C, D only (4) A, B, D only Q33. Match List I with List II List II (No. of lone pairs of e on central atom) (A) IF ₇ I. Three (B) ICl ₄ II. One (C) XeF ₆ III. Two (D) XeF ₂ IV. Zero Choose the correct answer from the options given below: (1) A - II, B - III, C - IV, D - III (3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (E) BaSO ₄ (E) BaSO ₄ (E) BaSO ₄ (Mathonso Mathonso Mathon	(A) Number	of lone pairs on ox	xygen :	is 2.				
(B) Molecule is bent 'V' shaped. (E) Molecular geometry is linear. mathons ma	(B) FOF angl	e is less than 104	.5°.					
(E) Molecular geometry is linear. Correct options are: (1) C, D, E only (3) A, C, D only (4) A, B, D only Q33. Match List I with List II List I (No. of lone pairs of e on central atom) (A) IF ₇ I. Three mathons II. One (B) ICI ₄ II. One (C) XeF ₆ III. Two mathons III. The III. The III. The III. The III. The III. The mathons III. The III. The III. The III. The III. The mathons III. The II	(C) Oxidation	state of 0 is -2.						
Correct options are: (1) C, D, E only mathons with mathons (2) B, E, A only mathons with mathons (3) A, C, D only (4) A, B, D only Q33. Match List I with List III mathons with mathons w	(D) Molecule	is bent 'V' shaped	l.					
(1) C, D, E only (3) A, C, D only (4) A, B, D only (4) A, B, D only (5) A, C, D only (6) A, B, D only (7) A on central atom) (7) Mathematical sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (C) SrSO ₄ (C) CaSO ₄ (C) SrSO ₄ (C) SrSO ₄ (C) SrSO ₄ (C) SrSO ₄ (C) CaSO ₄ (C) SrSO ₄ (C) CaSO ₄ (C) SrSO ₄ (C) CaSO ₄ (C) SrSO ₄ (C) SrSO ₄ (C) CaSO ₄ (C) SrSO ₄ (C) CaSO ₄ (C) SrSO ₄ (C) CaSO ₄ (C) BaSO ₄ (C) Mathematical sulphate (2) Mathematical sulphate (3) Mathematical sulphate (4) Mathematical sulphate (6) Mathematical sulphate (7) Mathematical	(E) Molecula	r geometry is linea	ar. ///.					
(3) A, C, D only (4) A, B, D only (3) A, C, D only (4) A, B, D only (5) Mathons (6) Mathons (7) Mathons (8) ICI ₄ II. One (9) XeF ₆ III. Two (10) XeF ₂ IV. Zero (11) A - II, B - III, C - IV, D - II (2) A - IV, B - III, C - II, D - III (3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III (5) MgSO ₄ (6) BaSO ₄ (7) CaSO ₄ (8) MgSO ₄ (9) SrSO ₄ (10) SrSO ₄ (11) Mathons (12) Mathons (13) Mathons (14) A, B, D, only (15) Mathons (16) Mathons (17) Mathons (18) Mathons (19) Mathons (19) Mathons (10) Mathons (10) Mathons (11) Mathons (12) Mathons (13) Mathons (14) Mathons (15) Mathons (16) Mathons (17) Mathons (18) Mathons (Correct option	ons are:						
Q33. Match List I with List II List I (No. of lone pairs of e on central atom) (A) IF ₇ I. Three (B) ICI ₄ II. One (C) XeF ₆ III. Two (D) XeF ₂ IV. Zero Choose the correct answer from the options given below: (1) A - II, B - III, C - IV, D - I (3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄ (E) BaSO ₄								
List I (No. of lone pairs of e on central atom) (A) IF ₇ I. Three dathons (Mo. of lone pairs of e on central atom) (B) ICl ₄ II. One (C) XeF ₆ III. Two (D) XeF ₂ IV. Zero Choose the correct answer from the options given below: (1) A - II, B - III, C - IV, D - I (2) A - IV, B - III, C - II, D - II (3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄ (Mathonso (Most III) (No. of lone pairs of e on central atom) Mathonso (Most III) (No. of lone p	/// was male as a mar	/// yee out le eur eur						
(No. of lone pairs of e on central atom) (A) on IF ₇ II. One (B) ICl ₄ III. One (C) XeF ₆ III. Two mathons with m	Q33. Match List I	with List II						
(molecules/ions) (No. of lone pairs of e on central atom) (A) on IF ₇ I. Three mathons Math	List I							
on central atom) (A) IF ₇ I. Three (B) ICl ₄ II. One (C) XeF ₆ III. Two (D) XeF ₂ IV. Zero Choose the correct answer from the options given below: (1) A - II, B - III, C - IV, D - I (3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄ (E) BaSO ₄		/ions) (No. of		_				
(B) ICl ₄ II. One (C) XeF ₆ III. Two (D) XeF ₂ IV. Zero (Choose the correct answer from the options given below: (1) A - II, B - III, C - IV, D - I (3) A - II, B - I, C - IV, D - III (4) A - IV, B - II, C - II, D - III Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄ (E) BaSO ₄ (Mathongo Mathongo Mathong	`	on o		· · · · · · · · · · · · · · · · · · ·				
(C) XeF ₆ III. Two (D) XeF ₂ IV. Zero Choose the correct answer from the options given below: (1) A - II, B - III, C - IV, D - I (3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄	(A) IF7	mqtnongo	Three	mathongo				
(C) XeF ₆ III. Iwo (D) XeF ₂ IV. Zero Choose the correct answer from the options given below: (1) A - II, B - III, C - IV, D - I (3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄	(B) ICl ₄	II.	One					
Choose the correct answer from the options given below: (1) A - II, B - III, C - IV, D - I (3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄ (C) BaSO ₄ (C) CaSO ₄ (E) BaSO ₄	(C) XeF	MIII.	Two					
(1) A - II, B - III, C - IV, D - I (2) A - IV, B - III, C - II, D - I (3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III (5) Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (6) BeSO ₄ (7) CaSO ₄ (8) MgSO ₄ (9) SrSO ₄ (10) SrSO ₄ (11) Mathongo (12) A - IV, B - III, C - II, D - III (23) A - IV, B - III, C - II, D - III (44) A - IV, B - III, C - II, D - III (54) A - IV, B - III, C - II, D - III (65) A - IV, B - III, C - II, D - III (75) A - IV, B - III, C - II, D - III (86) A - IV, B - III, C - II, D - III (97) A - IV, B - III, C - II, D - III (98) A - IV, B - III, C - II, D - III (199) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (190) A - IV, B - III, C - II, D - III (20) A - IV, B - III, C - II, D - III (31) A - IV, B - III, C - II, D - III (41) A - IV, B - III, C - II, D - III (51) A - IV, B - III, C - II, D - III (62) A - IV, B - III, C - II, D - III (73) A - IV, B - III, C - II, D - III (74) A - IV, B - III, C - II, D - III (75) A - IV, B - III, C - II, D - III (75) A - IV, B - III, C - II, D - III (76) A - IV, B - III, C - II, D - III (77) A - IV, B - III, C - II, D - III (88) A - IV, B	(D) XeF	IV.	Zero					
(3) A - II, B - I, C - IV, D - III (4) A - IV, B - I, C - II, D - III (5) Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (6) BeSO ₄ (7) CaSO ₄ (8) MgSO ₄ (9) SrSO ₄ (10) SrSO ₄	Choose the c	orrect answer from	n the	options given b	elow:			
Q34. The alkaline earth metal sulphate(s) which are readily soluble in water is/are: (A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄								
(A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄ (E) BaSO ₄ (Mathongo Mathongo Ma	(3) A - II, B -	I, C - IV, D - III			(4) A - IV, B - I	, C - II, l	Dallinoudo	
(A) BeSO ₄ (B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄ (E) BaSO ₄ (Mathongo Mathongo Ma	O34. The alkaline	earth metal sulpha	te(s) v	vhich are readil	v soluble in wate	er is/are:		
(B) MgSO ₄ (C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄ (E) BaSO ₄ (Mathongo Mathongo Matho		///. mathorigo	1//.		mathons			
(C) CaSO ₄ (D) SrSO ₄ (E) BaSO ₄ (E) BaSO ₄ (Mathongo Mathongo								
/// m(E) BaSO ₄ /// mathongo /// mathongo /// mathongo /// mathongo	(C) CaSO ₄							
(E) ba304	(D) SrSO ₄							
Choose the correct answer from the options given below:	(E) BaSO ₄							
	Choose the c	orrect answer from	n the	options given b	elow:			
(1) A only // mathongo // mathongo (2) B only hongo // mathongo // mathongo	(1) A only				(2) B only			
(3) A and B (4) B and C	(3) A and B							
Q35. Lithium aluminium hydride can be prepared from the reaction of	O35. Lithium alum			repared from th	e reaction of			
(1) LiCl and Al_2H_6 (2) LiH and Al_2Cl_6			Γ.	1		Cl_6		

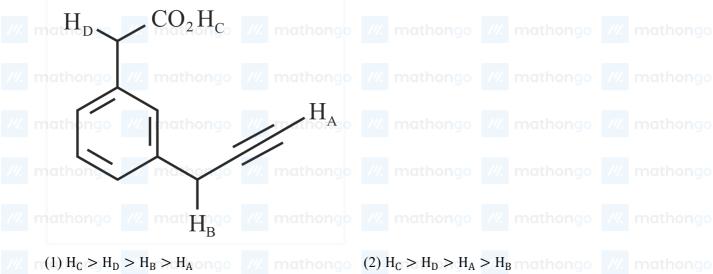
Q36. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

(4) LiH and AlOH₃

Question Paper

JEE Main Previous Year Paper MathonGo

Assertion (A): In expensive scientific instruments, silica gel is kept in watch-glasses or in semipermeable membrane bags.


Reason (R): Silica gel adsorbs moisture from air via adsorption, thus protects the instrument from water corrosion (rusting) and / or prevents malfunctioning.

In the light of the above statements, choose the correct answer from the options given below:

(1) (A) is false but (R) is true

- (2) (A) is true but (R) is false
- (3) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (4) Both (A) and (R) are true but (R) is not the correct explanation of (A)

Q37. What is the correct order of acidity of the protons marked A - D in the given compounds?

(3) $H_D > H_C > H_B > H_A$

(4) $H_C > H_A > H_D > H_B$

Q38. The major products 'A' and 'B', respectively, are

(2)
$$CH_3$$
 CH_3 $CH_$

Q39. Formation of photochemical smog involves the following reaction in which A, B and C are respectively.

(i) $NO_2 \rightarrow A + B$

JEE Main Previous Year Paper

Question Paper

MathonGo

- $r(ii) B + O_2 \rightarrow C$ mathongo /// mathongo /// mathongo /// mathongo
 - (iii) $A + C \rightarrow NO_2 + O_2$

Choose the correct answer from the options given below:

(1) $0, N0 \text{ and } N0_3$

(2) 0, N₂0 and NO

(3) N, O_2 and O_3

 $(4) NO, O and O_3$

Q40. In the extraction of copper, its sulphide ore is heated in a reverberatory furnace after mixing with silica to:

- (1) separate CuO as CuSiO₃
- (2) remove calcium as CaSiO₃
- (3) decrease the temperature needed for roasting of (4) remove FeO as FeSiO₃

matCu₂S₁₀ ///. mathongo ///. mathongo

- **Q41.** During the qualitative analysis of SO_3^2 using dilute H_2SO_4 , SO_2 gas is evolved which turns $K_2Cr_2O_7$ solution (acidified with dilute H₂SO₄):
 - (1) Black

(2) Red

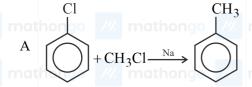
- (3) Green
- mathongo /// mathongo /// mathongo ///

Q42. Which of the following is correct order of ligand field strength?

- (1) $CO < en < NH_3 < C_2O_4^{2-} < S^{2-}$
- Id strength? (2) $S^{2^{-}} < C_2 O_4^{2^{-}} < NH_3 < en < CO$ (4) $S^{2^{-}} < NH_3 < en < CO < C_2 O_4^{2^{-}}$
- (3) $NH_3 < en < CO < S^{2-} < C_2O_4^{2-}$

Q43. To inhibit the growth of tumours, identify the compounds used from the following:

- (A) EDTA
- (B) Coordination Compounds of Pt
- (C) D-Penicillamine athongo /// mathongo /// mathongo /// mathongo ///
- (D) Cis Platin

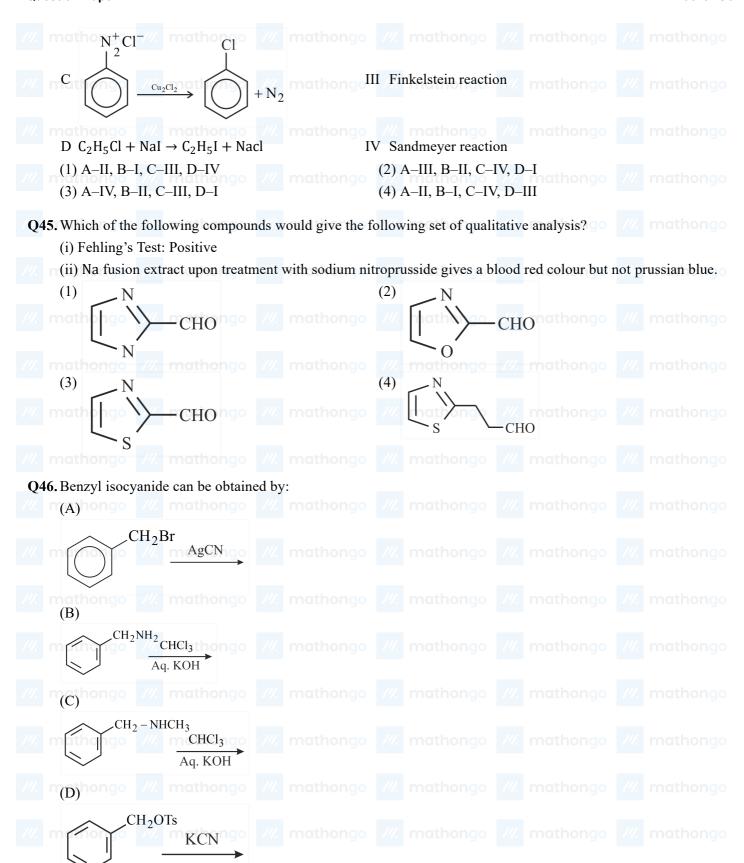

Choose the correct answer from the option given below:

(1) B and D Only

- (2) C and D Only
- (3) A and B Only mathongo mathongo
- (4) A and C Only

Q44. Match List I with List II

List Ingo /// mathongo //


Fittig reaction

$$\begin{array}{c}
\text{Cl} \\
\text{B} \\
\text{+2Na} \rightarrow \\
\end{array}$$

II Wurtz Fittig reaction

JEE Main 2023 (30 Jan Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

Choose the correct answer from the options given below:

(1) A and D /// mathongo /// mathongo /// mathongo /// mathongo	(2) Only Brongo (4) B and C		
Q47. Caprolactam when heated at high temperate	ure in presence of water, give	mathongo	
(1) Teflon (3) Nylon 6, 6 mathongo // mathongo	(2) Dacron (4) Nylon 6		
Q48. Amongst the following compounds, which (1) Ranitidine	one is an antacid? (2) Meprobamate		
(3) Terfenadine	(4) Brompheniram	nine mathonac	
Q49. In the wet tests for identification of various			
belong to group IV in qualitative inorganic (1) Fe ³⁺	analysis? /// mathongo (2) Zn ²⁺		
/// n(3) Co ²⁺ /// mathongo /// mathongo	(4) Ni ²⁺		
Q50. Given below are two statements: one is lab Assertion (A): Ketoses give Seliwanoff's t Reason (R): Ketoses undergo β-eliminatio	test faster than Aldoses. on followed by formation of f	mathongo urfural.	/// mathongo
In the light of the above statements, choose (1) (A) is false but (R) is true		R) are true and (R)	
	i i	(A)/ mathongo	
(3) (A) is true but (R) is false /// mathongo /// mathongo /// mathongo		R) are true but (R) in ation of (A)	
Q51. The energy of one mole of photons of radia (Nearest integer) (Given: $h = 6.626 \times 10^{-34} \text{Js N}_A = 6.022$	thongo $\times 10^{23}$ mol ⁻¹) thongo $\times 10^{23}$ mol mathongo ally into vacuum to a total vo	mathongo mathongo	change in internal
Q53.600mL of 0.01M HCl is mixed with 40 (Nearest integer)	00 mL of 0.01 M H ₂ SO ₄ . The thongo $\frac{1}{100}$ mathongo	he pH of the mixtumathongo	are is $\underline{} \times 10^{-2}$.
[Given $\log 2 = 0.30$, $\log 3 = 0.48$,	$\log 5 = 0.69, \qquad \log 7 =$	= 0.84, log11	= 1.04]
Q54. A 300mL bottle of soft drink has 0.2MCO of the dissolved CO ₂ at STP is mL. (Given: At STP, molar volume of an ideal ga	Nearest integer)		
Q55. A solution containing 2 g of a non-volatil of the solute is gmol ⁻¹ . (Nearest inte Given, water boils at 373 K, K _b for water	eger)	oils at 373.52 K.	The molecular mass
Q56. Some amount of dichloromethane CH_2C 2.6 × 10 ⁻³ M solution of CH_2Cl_2DCM . The			CHCl ₃ to prepare

MathonGo

Given: Atomic mass: C = 12; H: 1; Cl = 35.5 density of $CHCl_3 = 1.49$ g cm⁻³ athonog /// mathonog

Q57. Consider the cell

Pt_sH₂g, 1atmH⁺aq, 1M | Fe^{3 +} aq, Fe^{2 +} aq Pt s

When the potential of the cell is 0.712 V at 298 K, the ratio Fe^{2+} / Fe^{3+} is

(Nearest integer)

Given: $Fe^{3+} + e^{-} = Fe^{2+}$, $E^{\circ}Fe^{3+}$, Fe^{2+} Pt = 0.771 $\frac{2.303RT}{F} = 0.06$ V

Q58. If compound A reacts with B following first order kinetics with rate constant 2.011×10^{-3} s⁻¹. The time taken by A (in seconds) to reduce from 7 g to 2 g will be _____. (Nearest Integer) log5 = 0.698, log7 = 0.845, log2 = 0.301

Q59. The number of electrons involved in the reduction of permanganate to manganese dioxide in acidic medium is

Q60. A trisubstituted compound 'A', C₁₀H₁₂O₂ gives neutral FeCl₃ test positive. Treatment of compound 'A' with NaOH and CH₃Br gives C₁₁H₁₄O₂, with hydroiodic acid gives methyl iodide and with hot conc. NaOH gives a compound B, $C_{10}H_{12}O_2$. Compound 'A' also decolorises alkaline KMnO₄. The number of π bond/s present in the compound 'A' is

Q61. If the solution of the equation $\log_{\cos x} \cot x + 4\log_{\sin x} \tan x = 1$, $x \in 0, \frac{\pi}{2}$ is $\sin^{-1} \frac{\alpha + \sqrt{\beta}}{2}$, where α, β are integers, then $\alpha + \beta$ is equal to: mathongo /// mathongo /// mathongo /// mathongo

(1) 3

Q62. If $a_n = \frac{-2}{4n^2 - 16n + 15}$, then $a_1 + a_2 + \dots + a_{25}$ is equal to: $(1) \frac{51}{\frac{144}{141}}$ $(2) \frac{49}{\frac{138}{138}}$ $(4) \frac{4}{147}$

Q63. If the coefficient of x^{15} in the expansion of $ax^3 + \frac{1}{bx^{\frac{1}{3}}}$ is equal to the coefficient of x^{-15} in the expansion of

 $ax^{\frac{1}{3}} - \frac{1}{bx^3}^{15}$, where a and b are positive real numbers, then for each such ordered pair a, b:

(1) a = b(2) ab = 1(3) a = 3b(4) ab = 3

Q64. The coefficient of x^{301} in $1 + x^{500} + x1 + x^{499} + x^21 + x^{498} + \dots + x^{500}$ is:

 $(1)^{501}C_{302}$

 $(2)^{500}C_{301}$

- (3) $^{500}C_{300}$
- /// mathongo /// mathongo (4) $^{501}C_{200}$ mathongo /// mathongo /// mathongo

Q65. If $\tan 15^{\circ} + \frac{1}{\tan 75^{\circ}} + \frac{1}{\tan 105^{\circ}} + \tan 195^{\circ} = 2a$, then the value of $a + \frac{1}{a}$ is:

(1) 4 and (2) 4 - $2\sqrt{3}$ and (3) mathons (4) mathons (5) 4 - $2\sqrt{3}$ and (6) mathons (7)

(3) 2

 $(4) 5 - \frac{3}{2}\sqrt{3}$

Q66. A straight line cuts off the intercepts $\mathrm{OA}=\mathrm{OB}=\mathrm{OB}=\mathrm{OB}=\mathrm{OB}$ positive directions of \$\mathrm{x}\$-axis and \$\mathrm{y}-\$ axis respectively. If the perpendicular from origin \$\mathrm{O}\$ to this line makes an angle of \$\frac{\pi}{6}\$ with positive direction of \$y\$-axis and the

MathonGo

area of \$\triangle \mathrm{OAB}\$ is \$\frac{98}{3} \sqrt{3}\$, then \$\mathrm{a}^2-\mathrm{b}^2\$ is equal to:

- $(1) \frac{392}{\frac{3}{3}}$ $(3) \frac{196}{2}$
- ///. mathongo ///. mathongo (2) 196athongo ///. mathongo ///. mathongo (4) 98

Q67. Let y = x + 2, 4y = 3x + 6 and 3y = 4x + 1 be three tangent lines to the circle $(x - h)^2 + (y - k)^2 = r^2$.

- Then h + k is equal to :
- (1) 5 ongo /// mathongo /// mathongo
- (3)6
- (2) $5(1+\sqrt{2})$ mathongo mathongo
- $(4) 5\sqrt{2}$

Q68. If P(h, k) be point on the parabola $x = 4y^2$, which is nearest to the point Q(0, 33), then the distance of Pfrom the directrix of the parabola $y^2 = 4(x + y)$ is equal to:

(1)2

(3) 8

mathongo (4) 6 mathongo /// mathongo

Q69. Among the statements:

- S1: $p \lor q \Rightarrow r \Leftrightarrow p \Rightarrow r$
- $S2: p \lor q \Rightarrow r \Leftrightarrow p \Rightarrow r \lor q \Rightarrow r$
- (1) Only (S1) is a tautology
- (2) Neither (S1) nor (S2) is a tautology
- (3) Only (S2) is a tautology

(4) Both (S1) and (S2) are tautologies

Q70. The minimum number of elements that must be added to the relation R = (a, b), (b, c) on the set $\{a, b, c\}$ so that it becomes symmetric and transitive is:

- (1) 4 on go
- ///. mathongo ///. mathongo (2) 7 mathongo ///. mathongo
- (3)5

Q71. Let $A = \begin{pmatrix} m & n \\ p & q \end{pmatrix}$, $d = A \neq 0$ and A - d Adj A = 0. Then

- $(1) 1 + d^2 = m + q^2$
- (2) $1 + d^2 = m + q^2$ mathongo (4) $1 + d^2 = m^2 + q^2$
- (3) $1 + d^2 = m^2 + q^2$

Q72. Let the system of linear equations // mathongo // mathongo // mathongo // mathongo

$$x + y + kz = 2$$

$$m2x + 3y - z = 1$$
 mathongo ///. mathongo ///. mathongo ///. mathongo

$$3x + 4y + 2z = k$$

have infinitely many solutions. Then the system

$$k+1 \quad x+2k-1 \quad y=7$$

- 2k + 1x + k + 5y = 10 has:
- (1) infinitely many solutions
- (3) no solution

- (2) unique solution satisfying x y = 1
- (4) unique solution satisfying x + y = 1

Q73. Suppose $f: R \to 0$, ∞ be a differentiable function such that $5fx + y = fx \cdot fy$, $\forall x, y \in R$, If f3 = 320, then $\sum_{n=0}^{5} fn$ is equal to:

(1)6875

(2)6575

(3)6825

(4)6528

MathonGo

Q74. The number of points on the curve $y = 54x^5 - 135x^4 - 70x^3 + 180x^2 + 210x$ at which the normal lines are parallel to x + 90y + 2 = 0 is:

- (1) 2_{ongo} ///. mathongo ///. mathongo (2) 3 mathongo ///. mathongo
- (3) 4

Q75. If [t denotes the greatest integer ≤ 1 , then the value of $\frac{3e-1}{e} \int_{1}^{2} x^{2} e^{x+x^{3}} dx$ is :

Q76. Let the solution curve y = y(x) of the differential equation $\frac{dy}{dx} - \frac{3x^5 \tan^{-1}x^3}{1 + x^6^{\frac{3}{2}}}y = 2x \exp \frac{x^3 - \tan^{-1}x^3}{\sqrt{(1+x)^6}}$ pass through

- the origin. Then y(1) is equal to: the origin. Then y (1) is equal to: $(1) \exp \frac{4 - \pi}{4\sqrt{2}}$ $(3) \exp \frac{1 - \pi}{4\sqrt{2}}$ $(4) \exp \frac{4 + \pi}{4\sqrt{2}}$

Q77. If \vec{a} , \vec{b} , \vec{c} are three non-zero vectors and \hat{n} is a unit vector perpendicular to \vec{c} such that $\vec{a} = \alpha \vec{b} - \hat{n}$, $\alpha \neq 0$ and $\vec{b} \cdot \vec{c} = 12$, then $\vec{c} \times \vec{a} \times \vec{b}$ is equal to: mathongo mathongo mathongo

- (3) 12
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q78. The line l_1 passes through the point 2, 6, 2 and is perpendicular to the plane 2x + y - 2z = 10. Then the shortest distance between the line l_1 and the line $\frac{x+1}{2} = \frac{y+4}{2^3} = \frac{z}{2}$ is:

- ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q79. Let a unit vector \overrightarrow{OP} make angle α , β , γ with the positive directions of the co-ordinate axes OX, OY, OZ respectively, where $\beta \in 0, \frac{\pi}{2}$. \overrightarrow{OP} is perpendicular to the plane through points 1, 2, 3, 2, 3, 4 and 1, 5, 7, then which one of the following is true? mathongo mathongo mathongo mathongo mathongo

- (1) $\alpha \in \frac{\pi}{2}$, π and $\gamma \in \frac{\pi}{2}$, π (2) $\alpha \in 0$, $\frac{\pi}{2}$ and $\gamma \in 0$, $\frac{\pi}{2}$ (3) $\alpha \in \frac{\pi}{2}$, π and $\gamma \in 0$, $\frac{\pi}{2}$ and $\gamma \in 0$.

Q80. If an unbiased die, marked with -2, -1, 0, 1, 2, 3 on its faces is thrown five times, then the probability that the product of the outcomes is positive, is:

- (1) $\frac{881}{2592}$ (2) $\frac{521}{2592}$ (3) $\frac{440}{2592}$ (4) $\frac{27}{288}$ (7) mathongo (8) mathongo (9) mathongo (10) mathongo (11) $\frac{251}{2592}$ (12) mathongo (13) $\frac{27}{288}$

Q81. Let z = 1 + i and $z_1 = \frac{1 + i\bar{z}}{\bar{z}(1-z) + \frac{1}{z}}$. Then $\frac{12}{\pi} \arg z_1$ is equal to though mathons mathons.

Q82. Number of 4-digit numbers (the repetition of digits is allowed) which are made using the digits 1, 2, 3 and 5, and are divisible by 15, is equal to

Q83. $\sum_{n=0}^{\infty} \frac{n^3 ((2n)!) + (2n-1)(n!)}{(n!)((2n)!)} = ae + \frac{b}{e} + c$ where $a, b, c \in \mathbb{Z}$ and $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ Then $a^2 - b + c$ is equal to

- **Q84.** The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted, a and b are respectively mean and variance of remaining 6 observation, then a + 3 b 5 is equal to _____
- **Q85.** Let $S = \{1, 2, 3, 4, 5, 6\}$. Then the number of oneone functions $f: S \to P(S)$, where P(S) denote the power set of S, such that $f(n) \subset f(m)$ where n < m is
- **Q87.** $\lim_{x \to 0} \frac{48}{x^4} \int_0^x \frac{t^3}{t^6 + 1} dt$ is equal to
- Q88. Let α be the area of the larger region bounded by the curve $y^2 = 8x$ and the lines y = x and x = 2, which lies α in the first quadrant. Then the value of 3α is equal to α mathons α mathons
- **Q89.** If the equation of the plane passing through the point (1,1,2) and perpendicular to the line x 3y + 2z 1 = 0 = 4x y + z is Ax + By + Cz = 1, then 140 (C B + A) is equal to
- **Q90.** If $\lambda_1 < \lambda_2$ are two values of λ such that the angle between the planes $P_1: \vec{r} \left(3\hat{\mathbf{i}} 5\hat{\mathbf{j}} + \hat{k} \right) = 7$ and $P_2: \vec{r} \cdot \left(\lambda \hat{\mathbf{i}} + \hat{\mathbf{j}} 3\hat{k} \right) = 9$ is $\sin^{-1} \frac{2\sqrt{6}}{5}$, then the square of the length of perpendicular from the point $38\lambda_1, 10\lambda_2, 2$ to the plane P_1 is
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.
- /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

ANSWER	KEYS	g manual go	///.	muliungo	///. 	Igo ///.	mutiner go	74.	munion go
1. (2) nathor		3. (3)	///	4. (3)	5. (4)	6. (2)	ma 7. (1)	///	8. (3) hongo
9. (4)	10. (4)	11. (4)		12. (4)	13. (4)	14. (3)	15. (2)		16. (4)
17. (2) othor	18. (4)	19. (4)		20. (2)	21. (50) athor	22. (3)	23. (8)		24. (225)
25. (2)	26. (30	27. (32)		28. (10)	29. (4)	30. (220)	31. (4)		32. (4)
33. (2)	34. (3)	35. (2)		36. (3)	37. (2)	38. (1)	39. (4)		40. (4)
41. (3)	42. (2)	43. (1)		44. (4)	45. (4) natho	46. (3)	47. (4)		48. (1)
49. (1)	50. (3)	51. (798))	52. (0)	53. (186)	54. (1362	55. (100)		56. (148)
57. (10) thor	58. (62	3) 59. (3)		60. (4) ongo	61. (4) natho	62. (3)	63. (2)		64. (4) ongo
65. (1)	66. (1)	67. (1)		68. (4)	69. (2)	70. (2)	71. (1)		72. (4)
73. (3)	74. (3)	` '		76. (1)	77. (3)	78. (4)	79. (1)		80. (2)
81. (9) mathor	82. (21	mathongó		84. (37)	85. (3240)	86. (3125	87. (12)		88. (22)
89. (15)	90. (31								