Q1	-			radius 10 m. The bod		•	olutio	on in 4 s. At
			• `	m) from its starting po				
	(1) 30 ongo			(2) 15π othongo				
	$(3) 5 \pi$			$(4) 10\sqrt{2}$				
Q2	. Match List I v	with List II						
	List I			List II				
	A Angular	momentum	/// mathongo	$\left[\mathrm{ML^2T^{-2}} ight]$				
	B Torque		II	$\left[\mathrm{ML}^{-2}\mathrm{T}^{-2} ight]$				
	C Stress		///. mathongo	$\left[\mathrm{ML^{2}T^{-1}} ight]$				
	D Pressure	gradient	IV	$\left[\mathrm{ML^{-1}T^{-2}} ight]$				
	Choose the co	orrect answer from th	ne options given be	low:				
	(1) A-I, B-IV,	, C-III, D-II		(2) A-III, B-I, C-IV,	D-II			
	(3) A-II, B-II	I, C-IV, D-I		(4) A-IV, B-II, C-I,	D-III			
V/. Q4	horizontal. Th	re projected from grone bodies were found	to have same rang	(2) 40 m s^{-1} (4) 10 m s^{-1} teds 40 m s^{-1} at two decembers. If one of the body	differe was pi	rojected at an a	angle	of 60°, with
	horizontal the	en sum of the maxim	um heights, attaine	d by the two projectil	es, is ₋	m. (Giv	en g	$= 10 \text{ m s}^{-2}$
Q5	between body $g = 10 \text{ m s}^{-2}$ (1) 0. 2	and the floor. The very mathongo	alue of the coeffici	d of 20 m s ⁻¹ . The bottent of friction is: (Take (2) 0.3)	ke acc	eleration due t mathongo	o gra	
Qe	mathanaa	ped from a height of itting the floor, the b		cient of restitution for eight of m.	r the c	ollision betwe	en ba	ill and floor
///.	and 0.5 cm r respectively a	respectively. The densibout their diameters	sities of materials a will be in the ratio	of different materials are in the ratio $3:5$. To of $\frac{x}{6}$. The value of x	The mo	oment of inerti	a of 1	these discs mathongo
Q	A body weigh	nt W , is projected ver	rtically upwards fro	om earth's surface to r	each a	a height above	the e	earth which is

Q9. Under the same load, wire A having length 5. 0 m and cross section 2.5×10^{-5} m² stretches uniformly by the same amount as another wire B of length 6. 0 m and a cross section of 3.0×10^{-5} m² stretches. The ratio of the

equal to nine times the radius of earth. The weight of the body at that height will be: hongo // mothongo

(1) $\frac{W}{91}$ (2) $\frac{W}{100}$ (3) $\frac{W}{9}$ ongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

$\begin{array}{c} (1) \ 1 : 4 \\ (2) \ 1 : 1 \\ (4) \ 1 : 2 \end{array}$	
(2) 1 , 10 (4) 1 , 9	
/// (3) 1: 10 _{go} /// mathongo /// mathongo (4) 1: 2 _{athongo} /// mathongo /// r	
Q10. A water heater of power 2000 W is used to heat water. The specific heat capacity of water is 4200 J . The efficiency of heater is 70%. Time required to heat 2 kg of water from 10°C to 60°C is (Assume that the specific heat capacity of water remains constant over the temperature range of the	nathongo s.
Q11. Heat energy of 735 J is given to a diatomic gas allowing the gas to expand at constant pressure. Each molecule rotates around an internal axis but do not oscillate. The increase in the internal energy of the be: (1) 525 J (2) 441 J	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Q12. A hypothetical gas expands adiabatically such that its volume changes from 08 litres to 27 litres. If the final pressure of the gas to initial pressure of the gas is $\frac{16}{81}$. Then the ratio of $\frac{C_p}{C_v}$ will be. (1) $\frac{4}{3}$ (2) $\frac{3}{1}$ (4) $\frac{3}{2}$	the ratio of
Q13. For a solid rod, the Young's modulus of elasticity is 3.2×10^{11} N m ⁻² and density is 8×10^3 kg m	-3 The 00
velocity of longitudinal wave in the rod will be	i . The
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Q14. The displacement equations of two interfering waves are given by $y_1 = 10 \sin(\omega t)$ $y_2 = 5 \left[\sin(\omega t) + \sqrt{3} \cos \omega t \right]$ cm respectively. The amplitude of the resultant wave is cm.	$+\frac{\pi}{3}$) cm,
Q15. Considering a group of positive charges, which of the following statements is correct?	
(1) Net potential of the system cannot be zero at a point but net electric field can be zero at that point but net electric field can be zero at that point but net electric field can be zero at that point but net electric field can't but net electr	oint
(3) Both the net potential and the net field can be (4) Both the net potential and the net electric f	
Q16. Two parallel plate capacitors C_1 and C_2 each having capacitance of 10 μ F are individually charged D.C. source. Capacitor C_1 is kept connected to the source and a dielectric slab is inserted between Capacitor C_2 is disconnected from the source and then a dielectric slab is inserted in it. After capacitor C_1 is also disconnected from the source and the two capacitors are finally connected combination. The common potential of the combination will be V.	en it plates. erwards the in parallel
// r(Assuming Dielectric constant = 10) mathongo /// mathongo /// mathongo /// mathongo /// r	
Q17. The number of turns of the coil of a moving coil galvanometer is increased in order to increase current sensitivity by 50%. The percentage change in voltage sensitivity of the galvanometer will be: (1) 100% (2) 50% (3) 75% (4) 0%	

		is developed by a r			-	l through it.
(1) H (3) $\frac{H}{4}$		mathongo		$6H_{\rm othongo}$		
Q19. For the given	circuit, in the stead	y state, $ V_B - V_D $ =	/4.	m vihongo		
	// B	$12\Omega^{\mathrm{athongo}}$				
/// mathongo	M mathe M	$1\mu F$				
// mothor	$1 \Omega^{1}$	Clongo	14.	mathongo		
/// mathenge	$10~\Omega$ thongo	mathongo		mathongo		
///. mathango	My My	2Ω mathongo		mathongo		
///. mathango	/// mathongo			mathongo		
/// mathango				mathongo		
///. mathond 6 V	//. mathongo	///. mathongo	///.	mathongo		

Q20. A long conducting wire having a current I flowing through it, is bent into a circular coil of N turns. Then it is bent into a circular coil of n turns. The magnetic field is calculated at the centre of coils in both the cases. The ratio of the magnetic field in first case to that of second case is:

(1) N: n

mathongo (2) $n^2:N^2$ mathongo (4) n:N

(3) $N^2: n^2$

Q21. An alternating voltage source $V=260\sin(628t)$ is connected across a pure inductor of 5 mH. Inductive reactance in the circuit is:

(1) 3. 14Ω

/// mathongo /// mathongo (2) 6.28Ω hongo /// mathongo /// mathongo

 $(3) 0.5\Omega$

(4) 0.318Ω

Q22. A series LCR circuit consists of $R=80~\Omega$. $X_L=100~\Omega$, and $X_C=40~\Omega$. The input voltage is

Q23. Match List I and List II

List I

A Microwaves

List II mathongo math

B UV rays

C Infra-red rays	III Lasik eye s	urgerymathongo		
D X-rays	IV Aircraft na	vigation		
Choose the correct answer from t	the option given be	low: mathongo		
(1) A-II, B-IV, C-III, D-I		(2) A-IV, B-I, C-II,	D-III	
(3) A-IV, B-III, C-I, D-II		(4) A-III, B-II, C-I,	D-IV _{mathongo}	
Q24. A microscope is focused on an oli inside the bucket, then microscop				
liquid in the bucket is:	ic have to be raised	by 50 cm to focus m	ie object agam. The	neight of the
// (1) 75 cm // mathongo		(2) 50 cm		
(3) 18 cm		(4) 12 cm		
Q25. Two light waves of wavelengths	800 and 600 nm ar	re used in Young's do	uble slit experimen	t to obtain
interference fringes on a screen p	olaced 7 m away fro	om plane of slits. If the	ne two slits are sepa	rated by 0.35 mm
, then shortest distance from the wavelength coincide will be	mm.			s of the two
Q26. If the two metals A and B are ex	mothonge		mathongo The work function	ons of metals A
and B are 4.8 eV and 2.2 eV.		•		/// magilaanaa
(1) Metal B will not emit photo- α		(2) Both metals A a	and B will emit pho	oto-electrons
(3) Both metals A and B will not photoelectrons		(4) Metal A will no	-	
Q27. The radius of electron's second st	tationary orbit in B	ohr's atom is R . The	radius of 3^{rd} orbit v	will be mathonao
$(1) \frac{R}{3}$		$(2)\ 2.\ 25\ R$		
/// $n(3) 3R_{190}$ /// mathongo		(4) $9R$ athongo		
Q28. If the binding energy of ground s	tate electron in a h	ydrogen atom is 13.6	eV, then, the ener	gy required to
remove the electron from the sec	///	///		/// [
Q29. Given below are two statements:				
Statement I: In a typical transis	tor, all three region			
Statement II: in a transistor, col	llector is the thicke	st and base is the thin	nest segment.	
In the light of the above statemer	its, choose the mos		, ,	ven below.
(1) Both Statement I and Statement		(2) Both Statement		
(3) Statement I is incorrect but St	tatement II is	(4) Statement I is co	orrect but Statemen	t II is
correct /// mathongo /// mathongo		incorrect ///. mathongo		
Q30. Given below are two statements				
Statement I : For transmitting a least $l = \frac{\lambda}{4}$ in dimension).	signal, size of ant	enna (l) should be co	omparable to wave	length of signal (at
Statement II : In amplitude mod	lulation, amplitude	of carrier wave rema	ins constant (uncha	nged).
In the light of the above statemen	-///. mountoned			Mai mounondo

(1) Both Statement I and Statement II are correct	(2) Both Statement I and Statement II are incorrect
---	---

- (3) Statement I is incorrect but Statement II is correct
- (4) Statement I is correct but Statement II is incorrect
- Q31. When a hydrocarbon A undergoes complete combustion it requires 11 equivalents of oxygen and produces 4 equivalents of water. What is the molecular formula of A?
 - (1) $C_{11}H_8$

(2) $C_{11}H_4$

(3) C_5H_8

- (4) C₉H₈thongo /// mathongo /// mathongo
- Q32. Assume carbon burns according to following equation:

$$2\mathrm{C(s)} + \mathrm{O_2(\ g)} o 2\,\mathrm{CO}\ (\mathrm{s})$$

when 12 g carbon is burnt in 48 g of oxygen, the volume of carbon monoxide produced is $____ \times 10^{-1}$ L at mathongo //// mathongo //// mathongo STP [nearest integer]

[Given : Assume CO as ideal gas, Mass of C is 12 g mol^{-1} , mass of O is 16 g mol^{-1} and molar volume of an idal gas at STP is 22.7 L mol⁻¹ 1

Q33. Arrange the following orbitals in decreasing order of energy.

A.
$$n = 3$$
, $l = 0$, $m = 0$

B.
$$n = 4$$
, $l = 0$, $m = 0$

C.
$$n = 3$$
, $l = 1$, $m = 0$

D.
$$n = 3$$
, $l = 2$, $m = 1$

The correct option for the order is:

(1)
$$D > B > C > A$$

(2)
$$B > D > C > A$$

(4) $D > B > A > C$ /// mathongo /// mathongo

$$(3) A > C > B > D$$

Q34. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): The first ionization enthalpy of 3d series elements is more than that of group 2 metals

Reason (R): In 3d series of elements successive filling of d-orbitals takes place.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both (A) and (R) are true and (R) is the correct (2) (A) is true but (R) is false explanation of (A)

- (3) (A) is false but (R) is true
- (4) Both (A) and (R) are true but (R) is not the correct explanation of (A)

///. mathongo ///. mathongo ///. mathongo

- Q35. Amongst the following, the number of species having the linear shape is $XeF_{2}, I_{3}^{+}, C_{3}O_{2}, I_{3}^{-}, CO_{2}, SO_{2}, BeCl_{2}$ and BCl_{2}^{\ominus}
- Q36. Enthalpies of formation of $CCl_4(g)$, $H_2O(g)$, $CO_2(g)$ and HCl are -105, -242, -394 and -92 kJ mol⁻¹ respectively. The magnitude of enthalpy of the reaction given below is kJmol⁻¹. (nearest integer)

$$m CCl_4(~g) + 2H_2O(g)
ightarrow CO_2(~g) + 4\,HCl(g)$$
 nor $m W$ mathona $m W$ mathona $m W$ mathona

Q37. Incorrect statement for the use of indicator in acid-base titration is:

MathonGo

Question Paper

(1) Methyl o	range n	nay be	used t	for a	weak	acid	VS
weak bas	titratio	n.					

- (2) Phenolphthalein may be used for a strong acid vs strong base titration.
- acid vs weak base titration.
- (3) Methyl orange is a suitable indicator for a strong (4) Phenolphthalein is a suitable indicator for a weak acid vs strong base titration.
- Q38. At 298 K, the solubility of silver chloride in water is 1.434×10^{-3} g L⁻¹. The value of $-\log K_{sp}$ for silver chloride is

(Given mass of Ag is 107.9 g mol⁻¹, and mass of Cl is 35.5 g mol⁻¹)

Q39. Given below are two statements:

Statement I: H₂O₂ is used in the synthesis of Cephalosporin

Statement II: H_2O_2 is used for the restoration of aerobic conditions to sewage wastes.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect
- (2) Both Statement I and Statement II are correct
- (3) Statement I is incorrect but Statement II is correct
- (4) Both Statement I and Statement II are incorrect

Q40. The element playing significant role in neuromuscular function and interneuronal transmission is:

(1) Be

(2) Mg

(3) Ca

(4) Li

Q41. The number of alkali metal(s), from Li, K, Cs, Rb having ionization enthalpy greater than $400 \text{ kJ} \text{ mol}^{-1}$ and forming stable super oxide is

- Q42. The Lewis acid character of boron tri halides follows the order:
 - (1) $BCl_3 > BF_3 > BBr_3 > Bl_3$

(2) $Bl_3 > BBr_3 > BCl_3 > BF_3$

(3) BBr₃ > Bl₃ > BCl₃ > BF₃

 $(4) BF_3 > BCl_3 > BBr_3 > Bl_3$

Q43. In Dumas method for the estimation of N_2 , the sample is heated with copper oxide and the gas evolved is passed over: mathongo 🎹 mathongo 🛚

(1) Copper gauze

(2) Pd

(3) Ni

(4) Copper oxide

Q44. A hydrocarbon 'X' with formula C_6H_8 uses two moles of H_2 on catalystic hydrogenation of its one mole. On ozonolysis, 'X' yields two moles of methane dicarbaldehyde. The hydrocarbon 'X' is:

(1) hexa-1, 3, 5-triene

(2) 1-methylcyclopenta-1, 4-diene

(3) cyclohexa-1, 3-diene

(4) cyclohexa-1, 4-diene

Q45. The normal rain water is slightly acidic and its pH value is 5. 6 because of which one of the following?

(1) $CO_2 + H_2O \rightarrow H_2CO_3$

- (2) $N_2O_5 + H_2O \rightarrow 2 HNO_3$
- (3) $2 SO_2 + O_2 + 2H_2O \rightarrow 2H_2 SO_4$
- (4) $4 \text{ NO}_2 + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow 4 \text{ HNO}_3$

Q46. A sample of a metal oxide has formula $M_{0.83}O_{1.00}$. The metal M can exist in two oxidation states +2 and +3. In the sample of $M_{0.83}O_{1.00}$, the percentage of metal ions existing in +2 oxidation state is %. (nearest integer)

Q47. Evaluate the following statements for their correctness.

- A. The elevation in boiling point temperature of water will be same for 0.1 M NaCl and 0.1 M urea.
- B. Azeotropic mixture boil without change in their composition.
- C. Osmosis always takes place from hypertonic to hypotonic solution.
- D. The density of $32\%~H_2~SO_4$ solution having molarity 4.09~M is approximately $1.26~g~mL^{-1}$.
- E. A negatively charged sol is obtained when KI solution is added to silver nitrate solution.

Choose the correct answer from the options given below:

(1) B and D only

(2) B, D and E only

(3) A and C only

- (4) A, B and C only
- Q48. The resistivity of a 0. 8M solution of an electrolyte is $5 \times 10^{-3} \Omega \text{cm}$. Its molar conductivity is $10^4 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. (Nearest integer)
- Q49. The rate constant for a first order reaction is 20 min^{-1} . The time required for the initial concentration of the reactant to reduce to its $\frac{1}{32}$ level is $____ \times 10^{-2}$ min. (Nearest integer)
- Q50. Match List I with List II

List I

- A Physisorption mathongo ///
- I Single Layer Adsorption

B Chemisorption

- II $20 40 \text{ kJ mol}^{-1}$
- $\begin{array}{c} C \ \mathrm{N_2(g)} + 3\mathrm{H_2(g)} \stackrel{\mathrm{Fe(s)}}{\longrightarrow} 2\,\mathrm{NH_3(g)} \end{array}$
- mothon III Chromatography
- D Analytical Application or Adsorption
- IV Heterogeneous catalysis

Choose the correct answer from the options given below: Mathonica Mathonica

(1) A-III, B-IV, C-I, D-II

- (2) A-II, B-III, C-I, D-IV
- (3) A-II, B-I, C-IV, D-III ongo /// mathongo
- (4) A-IV, B-II, C-III, D-I mathongo /// mathongo
- **Q51.** Which one of the following statements is incorrect?
 - (1) van Arkel method is used to purify tungsten.
- (2) The malleable iron is prepared from cast iron by oxidising impurities in a reverberatory furnace.
- (3) Cast iron is obtained by melting pig iron with scrap iron and coke using hot air blast.
- (4) Boron and Indium can be purified by zone refining method.
- Q52. Which of the following elements have half-filled f-orbitals in their ground state?

(Given : atomic number Sm-62; Eu=63; Tb=65; Gd=64, Pm=61)

Choose the correct answer from the options given below:

(1) A and B only

- (2) C and D only
- (3) B and D only mothongo
- (4) A and E only
- Q53. If the CFSE of $[Ti(H_2O)_6]^{3+}$ is -96.0 kJ/mol, this complex will absorb maximum at wavelength nm. (nearest integer)

Assume Planck' constant (h) = 6.4×10^{-34} Js, Speed of light (c) = 3.0×10^8 m/s and Avogadro's constant (N_A) = 6×10^{23} / mol.

Q54. In the following halogenated organic	compounds the	one with maximum	number of chlorine a	toms in its
structure is:				

- (1) Chloral

mathongo

(2) Gammaxene /// mothongo /// mothongo

(3) Chloropicrin

(4) Freon-12

Q55. Cyclohexylamine when treated with nitrous acid yields (P). On treating (P) with PCC results in (Q). When (Q) is heated with dil. NaOH we get (R) The final product (R) is:

athongo (2) mathongo

(4) nathongo mathongo

Q56. The number of molecules which gives haloform test among the following molecules is:

- mathon OH

Q57. An organic compound $[A](C_4H_{11} N)$, shows optical activity and gives N_2 gas on treatment with HNO₂. The compound [A] reacts with PhSO₂ Cl producing a compound which is soluble in KOH. The structure of A is:

Q61. The equation $e^{4x} + 8e^{3x} + 13e^{2x} - 8e^x + 1 = 0, x \in R$ has :

- (1) four solutions two of which are negative
- (2) two solutions and both are negative

(3) no solution

(4) two solutions and only one of them is negative

Q62. The complex number $z = \frac{i-1}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}$ is equal to:

- (1) $\sqrt{2}i\left(\cos\frac{5\pi}{12} i\sin\frac{5\pi}{12}\right)$ (2) $\cos\frac{\pi}{12} i\sin\frac{\pi}{12}$ (3) $\sqrt{2}\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$ (4) $\sqrt{2}\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$

Q63. Let a_1, a_2, a_3, \ldots be an A.P. If $a_7 = 3$, the product $(a_1 a_4)$ is minimum and the sum of its first n terms is zero then $n! - 4a_{n(n+2)}$ is equal to go ///. mathongo ///. mathongo ///. mathongo ///. mathongo

 $(3) \frac{33}{4}$

(4) 24

Q65. The coefficient of x^{-6} , in the expansion of $\left(\frac{4x}{5} + \frac{5}{2x^2}\right)^9$, is although mathongo

Q66. If the constant term in the binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2} - \frac{4}{x^l}\right)^9$ is -84 and the coefficient of x^{-3l} is $2^{\alpha}\beta$ where eta < 0 is an odd number, then $|\alpha l - \beta|$ is equal to _____. mathongo _____ mathongo _____ mathongo _____ mathongo

Q67. If ${}^{2n+1}P_{n-1}$: ${}^{2n-1}P_n = 11: 21$, then $n^2 + n + 15$ is equal to :

Q68. The set of all values of a^2 for which the line x + y = 0 bisects two distinct chords drawn from a point $P\left(\frac{1+a}{2},\frac{1-a}{2}\right)$ on the circle $2x^2+2y^2-\left(1+a\right)x-\left(1-a\right)y=0$, is equal to :

- m(1) $(8,\infty)$ /// mathongo /// mathongo (2) (0,4] thongo /// mathongo /// mathongo

 $(3) (4, \infty)$

(4) (2, 12]

JEE Main 2023 (31 Jan Shift 2)

JEE Main Previous Year Paper

Question Paper

MathonGo

Q69. Let S be the set of all $a \in N$ such that the area of the triangle formed by the tangent at the point $P(b,c), b,c \in N$, on the parabola $y^2 = 2ax$ and the lines x = b, y = 0 is 16 unit², then $\sum_{a \in S} a$ is equal to m<u>atho</u>ngo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q70. Let H be the hyperbola, whose foci are $(1 \pm \sqrt{2}, 0)$ and eccentricity is $\sqrt{2}$. Then the length of its latus rectum is:

- (1) $\frac{3}{3}$ (3) $\frac{2}{3}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo

- (1) is equal to $\frac{27}{2}$ mothongo /// mothongo (2) is equal to 9 /// mothongo /// mothongo
 - (3) does not exist

(4) is equal to 27

Q72. The number of values of $r \in \{p, q, \neg p, \neg q\}$ for which $((p \land q) \Rightarrow (r \lor q) \land ((p \land r) \Rightarrow q)$ is a tautology, is :

(1) 1

(2) 2

- (3) 4 ongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q73. Let the mean and standard deviation of marks of class A of 100 students be respectively 40 and $\alpha(>0)$, and the mean and standard deviation of marks of class B of n students be respectively 55 and $30 - \alpha$. If the mean and variance of the marks of the combined class of 100 + n students are respectively 50 and 350, then the sum of variances of classes A and B is

(1) 500

- (3)650
- $\frac{(2)}{450}$ mathongo $\frac{(2)}{(4)}$ mathongo $\frac{(2)}{(4)}$ mathongo $\frac{(2)}{(4)}$ mathongo

Q74. Among the relations
$$S=\left\{(a,b):a,b\in R-\{0\},2+\frac{a}{b}>0\right\} \text{ and } T=\left\{(a,b):a,b\in R,a^2-b^2\in Z\right\},$$

- (1) S is transitive but T is not
- (2) both S and T are symmetric
- (3) neither S not T is transitive

(4) T is symmetric but S is not

Q75. Let $A = \left\lfloor a_{\hat{i}\hat{j}} \right\rfloor \cdot a_{ij} \in Z \cap [0,4], \ 1 \leq i,j \leq 2$. The number of matrices A such that the sum of all entries is aprime number $p \in (2, 13)$ is ___

Q76. Let A be a $n \times n$ matrix such that |A| = 2. If the determinant of the matrix $\operatorname{Adj}\left(2,\operatorname{Adj}\left(2\,\operatorname{A}^{-1}\right)\right)$ is 2^{84} , then mathongo ///. mathongo ///. mathongo ///. mathongo

If a point $P(\alpha, \beta, \gamma)$ satisfying $\begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} 2 & 10 & 8 \\ 9 & 3 & 8 \\ 8 & 4 & 8 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ lies on the plane 2x + 4y + 3z = 5, then **O77.**

 $6\alpha + 9\beta + 7\gamma$ is equal to (2) -1 mathons (2) -1

(3) 11

go ///. mathongo ///. mathongo ///. mathongo ///. mathongo **Q78.** Let $(a,b) \subset (0,2\pi)$ be the largest interval for which $\sin^{-1}(\sin\theta) - \cos^{-1}(\sin\theta) > 0, \theta \in (0,2\pi)$, holds. If $\alpha x^2 + \beta x + \sin^{-1}(x^2 - 6x + 10) + \cos^{-1}(x^2 - 6x + 10) = 0$ and $\alpha - \beta = b - a$, then α is equal to;

MathonGo

- /// $n(1) \frac{\pi}{8}$ ngo /// mathongo /// mathongo /// mathongo /// mathongo

- Q79. Let $f: R-\{2,6\} \to R$ be real valued function defined as $f(x)=\frac{x+2x+1}{x^2-8x+12}$. Then range of f is $(1) \left(-\infty,-\frac{21}{4}\right] \cup \left[\frac{21}{4},\infty\right)$ $(2) \left(-\infty,-\frac{21}{4}\right] \cup \left[0,\infty\right)$ $(3) \left(-\infty,-\frac{21}{4}\right) \cup \left(0,\infty\right)$ $(4) \left(-\infty,-\frac{21}{4}\right] \cup \left[1,\infty\right)$

- **Q80.** The absolute minimum value, of the function $f(x) = |x^2 x + 1| + [x^2 x + 1]$, where [t] denotes the greatest integer function, in the interval [-1, 2], is

- (1) $\frac{3}{2}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- **Q81.** Let $\alpha>0$. If $\int_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}}dx=\frac{16+20\sqrt{2}}{15}$ then α is equal to : othoroo /// mathongo ///

- (2) (2) (3) (4)
- **Q82.** If $\phi(x) = \frac{1}{\sqrt{x}} \int_{\frac{\pi}{4}}^{x} \left(4\sqrt{2}\sin t 3\phi'(t)\right) dt$, x > 0 then $\phi'(\frac{\pi}{4})$ is equal to

- $m(3)\frac{8}{\sqrt{\pi}}$ go /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- **Q83.** Let the area of the region $\{(x,y): |2x-1| \leq y \leq |x^2-x|, 0 \leq x \leq 1\}$ be A. Then $(6A+11)^2$ is equal to
- **Q84.** Let y=y(x) be the solution of the differential equation $(3y^2-5x^2)ydx+2x(x^2-y^2)dy=0$ such that y(1) = 1. Then $|(y(2))^3 - 12y(2)|$ is equal to :
 - (1) 64

- mathongo /// mathongo (2) $32\sqrt{2}$ mathongo /// mathongo /// mathongo
- **Q85.** Let $\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\widehat{k}, \overrightarrow{b} = \hat{i} \hat{j} + 2\widehat{k}$ and $\overrightarrow{c} = 5\widehat{i} 3\widehat{j} + 3\widehat{k}$, be there(three) vector. If \overrightarrow{r} is a vector such that, $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$ and $\overrightarrow{r} \cdot \overrightarrow{a} = 0$, then $25 |\overrightarrow{r}|^2$ is equal to
 - (1)560

(2) 339

- (3)449
- go /// mathongo /// mathongo (4) 336 athongo /// mathongo /// mathongo
- **Q86.** Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three vectors such that $|\overrightarrow{a}| = \sqrt{31}, 4|\overrightarrow{b}| = |\overrightarrow{c}| = 2$ and $2(\overrightarrow{a} \times \overrightarrow{b}) = 3(\overrightarrow{c} \times \overrightarrow{a})$. If the angle
- **Q87.** Let the plane $P: 8x + \alpha_1 y + \alpha_2 z + 12 = 0$ be parallel to the line $L: \frac{x+2}{2} = \frac{y-3}{3} = \frac{z+4}{5}$. If the intercept of Pon the y-axis is 1, then the distance between P and L is mathongo w mathongo w mathongo

- (1) $\sqrt{\frac{2}{7}}$ (2) $\frac{6}{\sqrt{14}}$ (2) $\sqrt{\frac{7}{2}}$ (2) $\sqrt{\frac{6}{\sqrt{14}}}$ (3) $\sqrt{\frac{7}{2}}$ (4) $\sqrt{\frac{7}{14}}$ thongo /// mathongo /// mathongo

JEE Main 2023 (31 Jan Shift 2) Question Paper

JEE Main Previous Year Paper
MathonGo

Q88. Let P be the plane, passing through the point $(1, -1, -5)$ and perpendicular to the line joining the points $(4, 1, -3)$ and $(2, 4, 3)$. Then the distance of P from the point $(3, -2, 2)$ is									
(4,1,-3) and $(2,4,3)$. Then the distance of P from the point $(3,-2,2)$ is									
n(1) 6 ongo m mathongo m mathongo m mathongo m mathongo m mathongo m									
(3) 5									
Q89. The foot of perpendicular from the origin O to a plane P which meets the co-ordinate axes at the co-ordinate P which meets P w									
is $(2, a, 4), a \in N$. If the volume of the tetrahedron $OABC$ is 144 unit ³ , then which of the following									
NOT on P? // mathongo // mathongo // mathongo //									
(1) (0,4,4) (2) (3,0,4) (4) (2,2,4)									
m(3) (0,6,3) /// mathongo /// mathongo (4) $(2,2,4)$ ongo /// mathongo									
$\mathbf{Q90}$. Let A be the event that the absolute difference between two randomly chosen real numbers in t	he sample space								
$[0,60]$ is less than or equal to a . If $P(A)=rac{11}{36}$, then a is equal to									

ANGWED	VEVS	muiningo	/7.	muliungo	///.	90 ///.	muinngo	///.	mulimgo
ANSWER		3 (1)		4 (4)	5 (2)	6 (2)	7 (1)		9 (1)
1. (4) nathon	2. (2) //	11. (4)		4. (4) _{nongo} 12. (2)	5. (2) 13. (3)		7. (1) ₉₀		8. (1) hongo
9. (4) 17. (4) athon	10. (1) 18. (2)	11. (4) 19. (3)		20. (4)	21. (80) tho	14. (1) 22. (5)	15. (3) 23. (5)		16. (1) 24. (300)
25. (20)	26. (55)	27. (1)		28. (25)	29. (48)	30. (136)	31. (4)		32. (1)
33. (1)	34. (1)	35. (2)		36. (3)	37. (2)	38. (1)	39. (4)		40. (1)
41. (1)	42. (3)	43. (1)		44. (3)	45. (2)	46. (2)	47. (4)		48. (2)
49. (1)	50. (3)	51. (227)		52. (5)	53. (173)	54. (10)	55. (2)		56. (59)
57. (25) thon	58. (17)	59. (480)		60. (3) ongo	61. (2) atho	`	ma 63. (4)		64. (1) longo
65. (3)	66. (4)	67. (2)		68. (1)	69. (4)	70. (3)	71. (4)		72. (2)
73. (4)	74. (1)	75. (2)		76. (2)	77. (2)	78. (4)	79. (3)		80. (2)
81. (6952)	82. (5040	, ,		84. (45)	85. (146)	86. (204)	87. (5)		88. (125)
89. (3)	90. (10)	mathongó		mathóngo	///. mátho	ngo ` ///.	mathongo		màthóngo