MathonGo

- Q1. In an expression $a \times 10^b$; ongo // mathongo // mathongo // mathongo
 - (1) b is order of magnitude for a > 5
- (2) b is order of magnitude for a < 5
- (3) a is order of magnitude for $b \le 5$ mathonic (4) b is order of magnitude for $5 < a \le 10$ mathonic
- Q2. Young's modulus is determined by the equation given by $Y = 49000 \frac{m}{l} \frac{dyn}{cm^2}$ where M is the mass and l is the extension of wire used in the experiment. Now error in Young modules (Y) is estimated by taking data from M-l plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and l are 500 g and 2 cm respectively then percentage error of Y is:
 - (1) 0.5%

- (3) 0.02%
- /// mathongo /// mathongo /// mathongo /// mathongo
- Q3. A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take
 - $\pi = 3.14$):
 - (1) 140.5
- mathongo /// mathongo /// mathongo /// mathongo
- (3) 139.4

- (4) 220.0
- **Q4.** A stationary particle breaks into two parts of masses m_A and m_B which move with velocities v_A and v_B respectively. The ratio of their kinetic energies $(K_B:K_A)$ is :
 - (1) $v_B : v_A$

- (2) $m_B : m_A$
- (3) $m_B v_B : m_A v_A$ mathongo
- (4) 1:1 mathongo /// mathongo
- Q5. Three bodies A, B and C have equal kinetic energies and their masses are 400 g. 1.2 kg and 1.6 kg respectively. The ratio of their linear momenta is: mothongo // mothongo
 - (1) $\sqrt{2}$; $\sqrt{3}$; 1

(2) $1:\sqrt{3}:2$

- (3) $1:\sqrt{3}:\sqrt{2}$
- 4 mathongo /// mathongo (4) $\sqrt{3}:\sqrt{2}:1_{00}$ /// mathongo ///
- Q6. A player caught a cricket ball of mass 150 g moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:
 - (1) 3 N

- (3) 150 N
- $^{\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$
- Q7. Two planets A and B having masses m_1 and m_2 move around the sun in circular orbits of r_1 and r_2 radii respectively. If angular momentum of A is L and that of B is 3 L, the ratio of time period $\left(\frac{T_A}{T_B}\right)$ is:
- mathongo mathongo $(2) \frac{1}{27} \left(\frac{m_2}{m_1}\right)^3$ mathongo mathongo mathongo
- $(3) \ 27 \left(\frac{m_1}{m_2}\right)^3$
 - mathongo $\frac{(4)\left(\frac{r_1}{r_2}\right)^3}{\sqrt{2}}$ athongo $\frac{(4)\left(\frac{r_1}{r_2}\right)^3}{\sqrt{2}}$ mathongo $\frac{(4)\left(\frac{r_1}{r_2}\right)^3}{\sqrt{2}}$
- **Q8.** Correct Bernoulli's equation is (symbols have their usual meaning):
 - (1) $P + mgh + \frac{1}{2}mv^2 = \text{constant}$ (2) $P + \rho gh + \frac{1}{2}\rho v^2 = \text{constant}$ (3) multiplies

(3) $P + \rho gh + \rho v^2 = \text{constant}$

(4) $P + \frac{1}{2}\rho gh + \frac{1}{2}\rho v^2 = \text{constant}$

Q9. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The

mathongo /// mathongo /// mathong

relation between the ratio $\frac{V_a}{V_d}$ and the ratio $\frac{V_b}{V_c}$ is:

- $(1) \frac{V_a}{V_d} \neq \frac{V_b}{V_c}$ $(2) \frac{V_a}{V_d} = \frac{V_b}{V_c}$ $(3) \frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^{-1} \text{ mathongo}$ $(4) \frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^{2}$

Q10. A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is:

- (1) $\frac{7}{5}$ mathong /// mathong (2) $\frac{3}{5}$ mathong /// mathong /// mathong

Q11. Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:

- (1) $\frac{a}{b}$ v go /// mathongo /// mathongo /// mathongo /// mathongo (3) $\frac{b}{a}$

Q12. In the given circuit, the terminal potential difference of the cell is:

- (1) 2 V

(3) 4 V

(4) 1.5 V mathongo /// mathongo

Q13. Paramagnetic substances: A. align themselves along the directions of external magnetic field. B. attract strongly towards external magnetic field. C. has susceptibility little more than zero. D. move from a region of strong magnetic field to weak magnetic field. Choose the most appropriate answer from the options given below:

(1) A, B, C Only

(2) A, B, C, D

(3) A, C Only

(4) B, D Only

Q14. A LCR circuit is at resonance for a capacitor C, inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:

MathonGo

Question Paper

- (1) Zero
- // mathongo /// mathongo /// mathongo /// mathongo
- (3) halved

(4) double

Q15. Critical angle of incidence for a pair of optical media is 45° . The refractive indices of first and second media are in the ratio:

- (1) $1:\sqrt{2}$
- mathongo ///. mathongo ///. mathongo ///. mathongo
- (3) 2:1

(4) 1 : 2

Q16. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is: (Assume h=6.63 $\times 10^{-34}$ J s, $m_e=9.0 \times 10^{-31}$ kg and $m_p=1836$ times m_e)

(1) $1:\sqrt{1836}$

 $(2) 1 : \frac{1}{1836}$

(3) 1: $\frac{1}{\sqrt{1836}}$

(4) 1: 1836 // mathongo // mathongo //

Q17. Average force exerted on a non-reflecting surface at normal incidence is 2.4×10^{-4} N. If 360 W/cm^2 is the light energy flux during span of 1 hour 30 minutes, Then the area of the surface is:

 $(1) 0.2 \text{ m}^2$

 $(2) 20 \text{ m}^2$

- $(3) 0.1 \text{ m}^2$
- mathongo /// mathongo (4) $0.02\,\mathrm{m}^2$ ongo /// mathongo //

Q18. Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:

(1) $10\mu g$

(2) $20\mu g$

- (3) $0.2\mu g$
- mathongo /// mathongo (4) $2\mu \mathrm{g}$ athongo /// mathongo /// mathongo

Q19. The output Y of following circuit for given inputs is:

(1) $\Lambda \cdot B(\Lambda + B)$

mathongo (2) 0 mathongo (11. mathongo

 $(3) \overline{\mathbf{A}} \cdot \mathbf{B}$

(4) $A \cdot B$

Q20. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is:

(1) 2.0 g/cm^3

(2) 1.7 g/cm^3

(3) 2.2 g/cm^3

(4) 2.5 g/cm^3

JEE Main 2024 (08 Apr Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

Q21. Three vectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three

Q22. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center

Q23. A liquid column of height 0.04 cm balances excess pressure of a soap bubble of certain radius. If density of liquid is 8×10^3 kg m⁻³ and surface tension of soap solution is 0.28Nm^{-1} , then diameter of the soap bubble is cm. (if $g = 10 \text{ m s}^{-2}$)

Q24. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is _____

Q26. Resistance of a wire at 0° C, 100° C and t° C is found to be 10Ω , 10.2Ω and 10.95Ω respectively. The temperature t in Kelvin scale is

Q27. An electron with kinetic energy 5eV enters a region of uniform magnetic field of 3 μ T perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is _____NC^{-1}. (Given, mass of electron = 9×10^{-31} kg, electric charge = 1.6×10^{-19} C)

Q28. A square loop PQRS having 10 turns, area 3.6×10^{-3} m² and resistance 100Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude B=0.5 T as shown. Work done in pulling the loop out of

JEE Main 2024 (08 Apr Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

- Q29. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width.

 Angular divergence corresponding to second order minima would be $___$ ×10⁻³rad.
- Q30. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5×10^{-14} m. If target nucleus has atomic number 80, then maximum velocity of α particle is ______ $\times 10^5$ m/s approximately. $\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9$ SI unit, mass of α particle = 6.72×10^{-27} kg)
- Q31. Combustion of glucose $(C_6H_{12}O_6)$ produces CO_2 and water. The amount of oxygen (in g) required for the complete combustion of 900 g of glucose is : [Molar mass of glucose in $gmol^{-1} = 180$]
 - (1)480
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- (3)960

(4) 32

Q32.

0119	List - I	rigo	List - II					
	(Elements)		(Properties in their respective groups)					
Α.	$\operatorname{Cl},\operatorname{S}$	I.	Elements with highest electronegativity					
В.	Ge, As	II.	Elements with largest atomic size					
C.	Fr, Ra	III.	Elements which show properties of both metals and non-metal					
D.	F, O math	IV.	Elements with highest negative electron gain enthalpy					

Match List I with List II

the correct answer from the options given below: ______ mathongo _____ mathongo _____ mathongo

(1) A-II, B-I, C-IV, D-III

- (2) A-III, B-II, C-I, D-IV
- (3) A-IV, B-III, C-II, D-I
- (4) A-II, B-III, C-IV, D-I

O33.

Match List I with List II

	$\operatorname{List-I}$		List-II
ongo	(Molecule)	ongo	(Shape)
A.	NH_3	I.	Square pyramid
oB.o	BrF_5 math		Tetrahedral //
C.	PCl_5	III.	Trigonal pyramidal
oD;o	CH ₄ math	oIV.	Trigonal bipyramidal

Choose the correct answer

from the options given below:

(1) A-II, B-IV, C-I, D-III

(2) A-III, B-I, C-IV, D-II

(3) A-IV, B-III, C-I, D-II

(4) A-III, B-IV, C-I, D-II

MathonGo

Q34.nathongo

Match List I with List II

ongo	List-Imathongo ///.	math	List-II ///. ma
	(Molecule)		(Shape)
\circ A $_{\cdot \circ}$	$\mathrm{Fe_4[Fe(CN)_6]_3\cdot xH_2O}$	rħath	Violet // ma
В.	$\left[\mathrm{Fe}(\mathrm{CN})_{5}\mathrm{NOS}^{4-}\right.$	II.	$\operatorname{Blood}\operatorname{Red}A$
\circ C $_{\cdot \circ}$	$[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ ngo ///	rHith	Prussian Blue
D.	$(\mathrm{NH_4})_3\mathrm{PO_4}\cdot 12\mathrm{MoO_3}$	IV.	Yellow

Choose the correct answer

from the options given below:

(1) A-III, B-I, C-II, D-IV

(2) A-I, B-II, C-III, D-IV

(3) A-IV, B-I, C-II, D-III

- (4) A-II, B-III, C-IV, D-I mathonao
- Q35. Given below are two statements: Statement I: $N(CH_3)_3$ and $P(CH_3)_3$ can act as ligands to form transition metal complexes. Statement II: As N and P are from same group, the nature of bonding of $N(CH_3)_3$ and P(CH₃)₃ is always same with transition metals. In the light of the above statements, choose the most appropriate answer from the options given below:
 - (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.

$$X \rightleftharpoons Y; K_1 = 1.0$$

For the given hypothetical reactions, the equilibrium constants are as follows: $Y \rightleftharpoons Z$; $K_2 = 2.0$ The

$$Z \rightleftharpoons W; K_3 = 4.0$$

equilibrium constant for the reaction $X \rightleftharpoons W$ is

(1) 6.0

mathongo (2) 12.0_{athongo}

(3) 7.0

Q37. Among the following halogens F_2 , Cl_2 , Br_2 and I_2 Which can undergo disproportionation reactions?

(1) F_2 , Cl_2 and Br_2

(2) F_2 and Cl_2

- (3) Only I_2 // mathongo // mathongo (4) Cl_2 , Br_2 and I_2

Q38. Thiosulphate reacts differently with iodine and bromine in the reactions given below:

$$\begin{array}{l} 2\,S_{2}O_{3}^{2-} + I_{2} \rightarrow S_{4}O_{6}^{2-} + 2I^{-} \\ S_{2}O_{3}^{2-} + 5Br_{2} + 5H_{2}O \rightarrow 2SO_{4}^{2-} + 4Br^{-} + 10H^{+} \\ \text{behaviour of thiosulphate?} \end{array}$$

Which of the following statement justifies the above dual

- (1) Bromine is a stronger oxidant than iodine
- (2) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reaction
- (3) Bromine is a weaker oxidant than iodine
- (4) Bromine undergoes oxidation and iodine undergoes reduction in these reactions

Q39. Give below are two statements: One is labelled as Assertion A and the other is labelled as Reason R: Assertion A: The stability order of +1 oxidation state of Ga, In and T1 is Ga < In < T1. Reason R: The inert pair effect stabilizes the lower oxidation state down the group. In the light of the above statements, choose the correct answer from the options given below:

JEE Main 2024 (08 Apr Shift 1)

JEE Main Previous Year Paper MathonGo

Question Paper

(2) A is false but R is true. (3) Both A and R are true and R is the correct (4) Both A and R are true but R is NOT the correct explanation of A. explanation of A. Q40. C. D. Which of the following are aromatic? (1) A and C only mathongo mathongo (2) B and D only (3) C and D only (4) A and B only mathengo Given below are two statements: Statements I: Compound A ncCH₃//

 C_2H_5 IUPAC name of Compound A is 4-chloro-1,3-dinitrobenzene. Statements II: Compound B

IUPAC name of Compound B is 4-ethyl-2-methylaniline. In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are incorrect. (2) Both Statement I and Statement II are correct.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.

Q42. In the given compound, the number of 2° carbon atom /s is ____

(1) Four

(2) Two

(3) One

(4) Three

JEE Main 2024 (08 Apr Shift 1)

JEE Main Previous Year Paper

Question Paper

MathonGo

Q43. Iron (III) catalyses the reaction between iodide and persulphate ions, in which A. Fe³⁺ oxidises the iodide ion B. Fe³⁺ oxidises the persulphate ion C. Fe²⁺ reduces the iodide ion D. Fe²⁺ reduces the persulphate ion Choose the most appropriate answer from the options given below:

(1) B only

(2) A only

(3) B and C only (4) A and D only

Q44. Number of Complexes with even number of electrons in t_{2g} orbitals is - $[\mathrm{Fe}(\mathrm{H_2O})_6]^{2+}, [\mathrm{Co}(\mathrm{H_2O})_6]^{2+}, [\mathrm{Co}(\mathrm{H_2O})_6]^{3+}, [\mathrm{Cu}(\mathrm{H_2O})_6]^{2+}, [\mathrm{Cr}(\mathrm{H_2O})_6]^{2+} \text{ mathongo}$

(3) longo /// mathongo /// mathongo /// mathongo /// mathongo

- Q45. An octahedral complex with the formula CoCl₃ · nNH₃ upon reaction with excess of AgNO₃ solution gives 2 moles of AgCl. Consider the oxidation state of Co in the complex is 'x'. The value of "x + n" is ____

/// mathongo /// mathongo /// mathongo /// mathongo

Q46. Which among the following compounds will undergo fastest S_N 2 reaction.

Q47. Identify the major products A and B respectively in the following set of reactions.

(1)
$$\Lambda = CH_3$$
 and $A = CH_3$ OH

(2)
$$A = CH_2$$
 and $B = CCH_3$

$$A = CH_2$$
 and $B = CH_3$ mathongo on another mathongo mathongo mathongo mathongo

(4)
$$A = CH_3$$
 and $B = CCOCII_3$

O48.

$$\begin{array}{c}
COOH \\
i) Br_2/Red P \\
\hline
ii) H_2O
\end{array}$$

Identify the product (P) in the following reaction:

Q	49.nathongo ///	matho	nga	List-Imathongo	///. m	List-II go ///. mathongo ///. mathong
				(Name of the test)		(Reaction sequence involved) [M is metal]
		matho	A.	Borax bead test	/ <u>í</u> . n	$oxed{ ext{MCO}_3 o ext{MO} \xrightarrow{ ext{Co(NO}_3)_2} ext{CoO} \cdot ext{MO}}$
	Match List I with	List II	B.	Charcoal cavity test	II.	$ ext{MCO}_3 o ext{MCl}_2 o ext{M}^{2+}$
		matho	C	Cobalt nitrate test	III ///. m	$ ext{MSO}_4 \xrightarrow{ ext{Na}_2 ext{B}_4 ext{O}_7} ext{M}(ext{BO}_2)_2 o ext{MBO}_2 o ext{M}$
		no est lo	D.	Flame test	IV	$\operatorname{MSO}_4 \xrightarrow{\operatorname{Na_2CO_3}} \operatorname{MCO_3} o \operatorname{MO} o \operatorname{M}$

Choose the correct answer from the options given below:

- (1) A-III, B-II, C-IV, D-I
- (3) A-III, B-I, C-II, D-IV mathongo
- (2) A-III, B-IV, C-I, D-II

Br

(4) A-III, B-I, C-IV, D-II

The time taken for A to become $1/4^{\text{th}}$ of its initial concentration is twice the time taken to become 1/2 of the same. Also, when the change of concentration of B is plotted against time, the resulting graph gives a straight

MathonGo

line with a negative slope and a positive intercept on the concentration axis. The overall order of the reaction is

Q57. The 'spin only' magnetic moment value of MO_4^{2-} is BM. (Where M is a metal having least metallic radii. among Sc, Ti, V, Cr, Mn and Zn). (Given atomic number:

 $\mathrm{Sc}=21, \mathrm{Ti}=22,\ \mathrm{V}=23, \mathrm{Cr}=24, \mathrm{Mn}=25$ and $\mathrm{Zn}=30)$

Q58. Major product B of the following reaction has ____

Q59. If 279 g of aniline is reacted with one equivalent of benzenediazonium chloride, the maximum amount of aniline yellow formed will be _____ g. (nearest integer) (consider complete conversion).

Q60. Number of amine compounds from the following giving solids which are soluble in NaOH upon reaction with

Hinsberg's reagent is

- **Q61.** The sum of all the solutions of the equation $(8)^{2x} 16 \cdot (8)^x + 48 = 0$ is :
 - $(1) 1 + \log_8(6)$

(2) $1 + \log_6(8)$

 $(3) \log_8(6)$

- $(4) \log_8(4)$
- Q62. Let z be a complex number such that |z+2|=1 and $\operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$. Then the value of $|\operatorname{Re}(\overline{z+2})|$ is

- mathongo (2) $\frac{24}{5}$ mathongo (4) $\frac{\sqrt{6}}{5}$ mathongo (7) mathongo
- **Q63.** If the set $R = \{(a,b) : a + 5b = 42, a, b \in \mathbb{N}\}$ has m elements and $\sum_{n=1}^{m} (1 i^{n!}) = x + iy$, where $i = \sqrt{-1}$, then the value of m+x+y is (2) 4 mathongo (2) 4 mathongo (2) 4 mathongo (3) 4 mathongo (4) mathongo (5) 4 mathongo (6) 4 mathongo (7) m

(3) 8

- (4)5
- **Q64.** If $\sin x = -\frac{3}{5}$, where $\pi < x < \frac{3\pi}{2}$, then $80 \left(\tan^2 x \cos x \right)$ is equal to
 - (1) 108

(2) 109

(3)18

(4) 19

MathonGo

Q65. The equations of two sides AB and AC of a triangle ABC are 4x + y = 14 and 3x - 2y = 5, respectively. The point $(2, -\frac{4}{3})$ divides the third side BC internally in the ratio 2:1. the equation of the side BC is

- (1) x + 3y + 2 = 0 mathong (2) x 6y 10 = 0 mathong (2) mathong
- (3) x 3y 6 = 0

(4) x + 6y + 6 = 0

Q66. Let the circles $C_1:(x-lpha)^2+(y-eta)^2=r_1^2$ and $C_2:(x-8)^2+\left(y-rac{15}{2}
ight)^2=r_2^2$ touch each other externally at the point (6,6). If the point (6,6) divides the line segment joining the centres of the circles C_1

(1) 125

- n(3) 110 go /// mathongo /// mathongo (4) 145 athongo /// mathongo /// mathongo

Q67. Let $H: \frac{-x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6)$, $\alpha > 0$ lies on H. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta$ is equal to mathongo mathong

(3) 169

ngo /// mathongo /// mathongo /// mathongo /// mathongo Q68. Let $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$. If $A^3 = 4A^2 - A - 21I$, where I is the identity matrix of order 3×3 , then 2a + 3b is

- equal to

 - (1) Longo /// mathongo /// mathongo /// mathongo /// mathongo

(4) -12

 $\mathbf{Q69.}$ Let [t] be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and $f:A o \mathbb{Z}$ be the function $f(x)=\left\lceil \log_2\left(x^2+\left\lceil rac{x^3}{5}
ight
ceil
ight)
ight
ceil$. The number of one-to-one functions from A to the range of f is (1) 25 ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

(3)20

Q70. For the function $f(x) = (\cos x) - x + 1, x \in \mathbb{R}$, between the following two statements (S1) f(x) = 0 for only one value of x in $[0, \pi]$. (S2) f(x) is decreasing in $[0, \frac{\pi}{2}]$ and increasing in $[\frac{\pi}{2}, \pi]$.

- (1) Both (S1) and (S2) are correct. (2) Both (S1) and (S2) are incorrect.
- (3) Only (S2) is correct.

(4) Only (S1) is correct.

Q71. Let $f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x - 10$. The number of points of local maxima of f in interval $(0,2\pi)$ is

- (1) 3 (3) 1 ongo /// mathongo /// mathongo /// mathongo /// mathongo

Q72. The number of critical points of the function $f(x) = (x-2)^{2/3}(2x+1)$ is mathongo

(1) 1

(3) 0

Q73. Let $I(x) = \int \frac{6}{\sin^2 x(1-\cot x)^2} dx$. If I(0) = 3, then $I\left(\frac{\pi}{12}\right)$ is equal to

MathonGo

 $(1) 2\sqrt{3}$ (3) $3\sqrt{3}$

go ///. mathongo ///. mathongo (2) $\sqrt{3}$ athongo ///. mathongo ///. mathongo

- **Q74.** The value of $k \in \mathbb{N}$ for which the integral $I_n = \int_0^1 \left(1-x^k\right)^n dx, n \in \mathbb{N}$, satisfies $147I_{20} = 148I_{21}$ is

(1) 14 (3) 10 ngo /// mathongo /// mathongo /// mathongo /// mathongo

Q75. Let f(x) be a positive function such that the area bounded by y = f(x), y = 0 from x = 0 to x = a > 0 is $e^{-a}+4a^2+a-1$. Then the differential equation, whose general solution is $y=c_1f(x)+c_2$, where c_1 and c_2 are arbitrary constants, is

 $(1) (8e^x - 1) \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

(2) $(8e^x-1)\frac{d^2y}{dx^2}-\frac{dy}{dx}=0$

(3) $(8e^x + 1) \frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$

- $(4) (8e^x + 1) \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$
- **Q76.** Let y = y(x) be the solution of the differential equation

 $(1+y^2)e^{ an x}dx+\cos^2 x\left(1+e^{2 an x}
ight)dy=0, y(0)=1.$ Then $y\left(rac{\pi}{4}
ight)$ is equal to athonomy mathonomy

- $n(3) \frac{1}{e}$ ongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- Q77. The set of all α , for which the vectors $\vec{a} = \alpha t \hat{i} + 6 \hat{j} 3 \hat{k}$ and $\vec{b} = t \hat{i} 2 \hat{j} 2 \alpha t \hat{k}$ are inclined at an obtuse angle for all $t \in \mathbb{R}$, is

(1) $\left(-\frac{4}{3}, 1\right)$ (2) $\left[0, 1\right]$ (3) $\left(-\frac{4}{3}, 0\right]$ (4) $\left(-2, 0\right]$ (5) mathongo

- If the shortest distance between the lines $L_1: \vec{r}=(2+\lambda)\hat{i}+(1-3\lambda)\hat{j}+(3+4\lambda)\hat{k}, \qquad \lambda \in \mathbb{R}$ is $\frac{m}{\sqrt{n}}$ is $\frac{m}{\sqrt{n}}$

, where $\gcd(m,n)=1$, then the value of m+n equals m mothong m mothong m

(1)390

(2)384

(3)377

- ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- **Q79.** Let P(x, y, z) be a point in the first octant, whose projection in the xy-plane is the point Q. Let $OP = \gamma$; the angle between OQ and the positive x-axis be θ ; and the angle between OP and the positive z-axis be ϕ , where O is the origin. Then the distance of P from the x-axis is

 $(1) \gamma \sqrt{1 - \sin^2 \phi} \cos^2 \theta$

mathongo (2) $\gamma \sqrt{1-\sin^2\theta\cos^2\phi}$ mathongo (2) mathongo

(3) $\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$

- (4) $\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}$ mathongo
- **Q80.** Let the sum of two positive integers be 24. If the probability, that their product is not less than $\frac{3}{4}$ times their greatest possible product, is $\frac{m}{n}$, where gcd(m,n)=1, then n-m equals // mathongo // mathongo

(3) 11

- ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- **Q81.** The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to

JEE Main 2024 (08 Apr Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

mathongo ///. mathogo ///. mathongo ///. mathongo ///. mathongo

mathongo wathongo wathongo wathongo wathongo wathongo wathongo wathongo

- will be, is _____ mathong mathon mat
- **Q84.** If the orthocentre of the triangle formed by the lines 2x + 3y 1 = 0, x + 2y 1 = 0 and ax + by 1 = 0, is the centroid of another triangle, whose circumcentre and orthocentre respectively are (3,4) and (-6,-8), then the value of |a - b| is
- Q85. The value of $\lim_{x\to 0} 2\left(\frac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}.....\sqrt[10]{\cos 10x}}{x^2}\right)$ is $\frac{\mathbf{Q86.}}{\mathbf{Let}} A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}.$ If the sum of the diagonal elements of A^{13} is 3^n , then n is equal to ______
- Q87. If the range of $f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}$, $\theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite G.P., whose first term is 64 and
- **Q88.** Let the area of the region enclosed by the curve $y = \min\{\sin x, \cos x\}$ and the x axis between $x = -\pi$ to $x=\pi$ be A. Then A^2 is equal to _____ mathongo ____ mathongo ____ mathongo
- **Q89.** Let $\vec{a}=9\hat{i}-13\hat{j}+25\hat{k}, \vec{b}=3\hat{i}+7\hat{j}-13\hat{k}$ and $\vec{c}=17\hat{i}-2\hat{j}+\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} imes \vec{a} = (\vec{b} + \vec{c}) imes \vec{a}$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$, then $\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2}$ is equal to______
- **Q90.** Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables Xand Y respectively denote the number of blue and yellow balls. If \bar{X} and \bar{Y} are the means of X and Y respectively, then $7ar{X}+4ar{Y}$ is equal to ______ mathong _____ mathong _____ mathong _____

ANSWER	KEYS	muliungo	///.	medie go	///.		go	///.	mulio go	///.	munitur go
1. (2)	2. (2)	3. (3)	14.	4. (1)	5. (2	2) _{mathor}	6. (4) ///	7. (2)	///.	8. (2) hongo
9. (2)	10. (2)	11. (1)		12. (1)	13. ((3)	14. (4)	15. (2)		16. (4)
17. (4) athon	18. (2)	19. (2)		20. (1)	21. ((3) athor	22. (15)	23. (7)		24. (16)
25. (12)	26. (748)	27. (4)		28. (3)	29. ((6)	30. (156)	31. (3)		32. (3)
33. (2)	34. (1)	35. (1)		36. (4)	37.	(4)	38. (1)	39. (3)		40. (2)
41. (4) athon	42. (3)	43. (4)		44. (2)	45. ((2)	46. (1)//	47. (4)		48. (1)
49. (2)	50. (1)	51. (5)		52. (6)	53. ((55)	54. (32)	55. (5)		56. (1)
57. (0) athon	58. (5)	59. (591)		60. (5)ongo	61. ((1)nathor	62. (1)″	63. (1)		64. (2) ongo
65. (1)	66. (2)	67. (2)		68. (2)	69. ((4)	70. (4)	71. (4)		72. (2)
73. (3)	74. (4)	75. (4)		76. (3)	77. ((3)	78. (4)	79. (1)		80. (1)
81. (36)	82. (103)	83. (5)		84. (16)	85. ((55) mathor	86. (7)	87. (96)		88. (16)
89. (569)	90. (17)										