Q1. If the percentage errors in measuring the length and the diameter of a wire are 0.1% each. The percentage error in measuring its resistance will be:

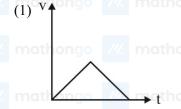
(1) 0.2%

Question Paper

- (3) 0.1%
- mathongo /// mathongo (2) 0.3% thongo /// mathongo /// mathongo
 - (4) 0.144%

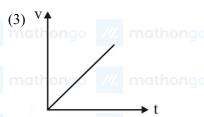
Q2. A force is represented by $F = ax^2 + bt^{\frac{1}{2}}$, where x = distance and t = time. The dimensions of $\frac{b^2}{a}$ are :

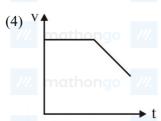
- (1) $ML^3 T^{-3}$
- (3) ML^{-1} T^{-1}

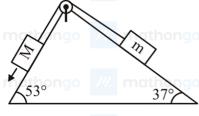

- mathongo mathongo (2) $\begin{bmatrix} MLT^{-2} \end{bmatrix}$ (4) $\begin{bmatrix} ML^2 & T^{-3} \end{bmatrix}$

Q3. The relation between time 't' and distance 'x' is $t = \alpha x^2 + \beta x$, where α and β are constants. The relation between acceleration a and velocity v is:

- (1) $a = -2\alpha v^3$
- mathongo /// mathongo (2) $a = -5\alpha v^5$ go /// mathongo /// mathongo
- (3) $a = -3\alpha v^2$


(4) $a = -4\alpha v^4$


Q4. A small steel ball is dropped into a long cylinder containing glycerine. Which one of the following is the correct representation of the velocity time graph for the transit of the ball?



Q5. In the given arrangement of a doubly inclined plane two blocks of masses M and m are placed. The blocks are connected by a light string passing over an ideal pulley as shown. The coefficient of friction between the surface of the plane and the blocks is 0.25. The value of m, for which M = 10 kg will move down with an acceleration of 2 m s⁻², is: (take g = 10 m s⁻² and tan $37^{\circ} = \frac{3}{4}$)

- (1) 9 kg
- /// mathongo (2) 4.5 kg longo /// mathongo /// mathongo

(3) 6.5 kg

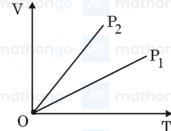
(4) 2.25 kg

Q6. A coin is placed on a disc. The coefficient of friction between the coin and the disc is μ . If the distance of the coin from the center of the disc is r, the maximum angular velocity which can be given to the disc, so that the coin does not slip away, is:

MathonGo

- (1) $\frac{\mu g}{r}$ ongo /// mathongo /// mathongo (2) $\sqrt{\frac{r}{\mu g}}$ athongo /// mathongo /// mathongo

- Q7. An artillery piece of mass M_1 fires a shell of mass M_2 horizontally. Instantaneously after the firing, the ratio of kinetic energy of the artillery and that of the shell is:


- $\begin{array}{c}
 (1) \frac{M_1}{(M_1 + M_2)} \\
 (3) \frac{M_2}{(M_1 + M_2)}
 \end{array}$ mathongo $\begin{array}{c}
 (2) \frac{M_2}{M_1} \\
 (4) \frac{M_1}{M_2}
 \end{array}$ mathongo $\begin{array}{c}
 (M_1 + M_2) \\
 (M_2 + M_2)
 \end{array}$
- **Q8.** Four identical particles of mass m are kept at the four corners of a square. If the gravitational force exerted on Four identical particles of mass m are kep. at any one of the masses by the other masses is $\frac{2\sqrt{2}+1}{32}\frac{Gm^2}{L^2}$, the length of the sides of the square is mathongo (2) 4L mathongo (2) 4L

(3) 3L

- (4) 2L
- $\mathbf{Q9}$. Two conductors have the same resistances at 0 °C but their temperature coefficients of resistance are α_1 and α_2 The respective temperature coefficients for their series and parallel combinations are:

(1) $\alpha_1 + \alpha_2$, $\frac{\alpha_1 + \alpha_2}{\frac{2}{\alpha_1 + \alpha_2}}$ (3) $\alpha_1 + \alpha_2$, $\frac{\alpha_1 + \alpha_2}{\alpha_1 + \alpha_2}$

- (2) $\frac{\alpha_1 + \alpha_2}{2}$, $\frac{\alpha_1 + \alpha_2}{2}$ (4) $\frac{\alpha_1 + \alpha_2}{2}$, $\alpha_1 + \alpha_2$
- Q10. The given figure represents two isobaric processes for the same mass of an ideal gas, then

- mathongo ///. mathongo ///. mathongo ///. mathongo

- $(1) P_2 \ge P_1$ (3) $P_1 = P_2$
- mathongo (4) $P_1 > P_2$ mathongo (7) mathongo
- Q11. The parameter that remains the same for molecules of all gases at a given temperature is :
 - (1) kinetic energy mathona // mathona (2) momentum

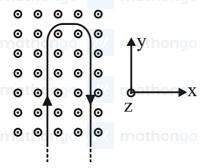
(3) mass

- (4) speed
- Q12. The fundamental frequency of a closed organ pipe is equal to the first overtone frequency of an open organ pipe. If length of the open pipe is 60 cm, the length of the closed pipe will be:
 - (1) 60 cm

(2) 45 cm

ongo ///. mathongo ///. mathongo

(3) 30 cm


- (4) 15 cm
- Q13. Two charges q and 3q are separated by a distance 'r' in air. At a distance x from charge q, the resultant electric field is zero. The value of x is :
 - (1) $\frac{(1+\sqrt{3})}{}$

 $(2) \frac{r}{3(1+\sqrt{3})}$

(4) $r(1+\sqrt{3})$

Q14. A rigid wire consists of a semicircular portion of radius R and two straight sections. The wire is partially immerged in a perpendicular magnetic field $B = B_0$ \hat{j} as shown in figure. The magnetic force on the wire if it

has a current *i* is : mothongo

mathongo ///. mathongo (2) 2iBR $t_{\hat{j}}^2$ ongo ///. mathongo

(1) -iBR(3) *iBR*

Q15. A coil is placed perpendicular to a magnetic field of 5000 T. When the field is changed to 3000 T in 2 s, an induced emf of 22 V is produced in the coil. If the diameter of the coil is 0.02 m, then the number of turns in the coil is:

(1)7

(3)35

Q16. In a plane EM wave, the electric field oscillates sinusoidally at a frequency of 5×10^{10} Hz and an amplitude of 50 V m⁻¹. The total average energy density of the electromagnetic field of the wave is: [Use

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$
]

(1)
$$1.106 \times 10^{-8}$$
 J m⁻³

$$(2) 4.425 \times 10^{-8}$$
 J m⁻³

(3)
$$2.212 \times 10^{-8}$$
 J m⁻³

(4)
$$2.212 \times 10^{-10}$$
 J m⁻³

Q17. The refractive index of a prism with apex angle A is $\cot \frac{A}{2}$. The angle of minimum deviation is:

(1)
$$\delta_m = 180^{\circ} - A$$

(1)
$$\delta_m = 180^\circ - A$$
 mathongo /// mathongo (2) $\delta_m = 180^\circ - 3A$ /// mathongo /// mathongo

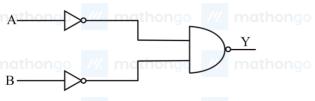
(3)
$$\delta_m = 180^{\circ} - 4A$$

(4)
$$\delta_m = 180^{\circ} - 2A$$

Q18. When a metal surface is illuminated by light of wavelength λ , the stopping potential is 8 V. When the same surface is illuminated by light of wavelength 3λ , stopping potential is 2 V. The threshold wavelength for this surface is:

 $(1) 5\lambda$

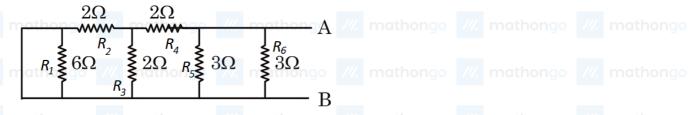
mathongo (4) 4.5λ thongo ///


Q19. If the wavelength of the first member of Lyman series of hydrogen is λ . The wavelength of the second member will be

mathongo /// mathongo $\frac{(2)\frac{32}{27}\lambda}{(4)\frac{32}{57}\lambda}$ mathongo /// mathongo /// mathongo

Q20. Identify the logic operation performed by the given circuit.

JEE Main 2024 (31 Jan Shift 1) Question Paper


JEE Main Previous Year Paper MathonGo

- (1) NAND
- (3) OR

- /// mathongo (2) NOR thongo /// mathongo /// mathongo
 - (4) AND
- **Q21.** A body starts falling freely from height H hits an inclined plane in its path at height h. As a result of this perfectly elastic impact, the direction of the velocity of the body becomes horizontal. The value of $\frac{H}{h}$ for which the body will take the maximum time to reach the ground is _____.
- Q22. A solid circular disc of mass 50 kg rolls along a horizontal floor so that its center of mass has a speed of 0.4 m s⁻¹. The absolute value of work done on the disc to stop it is J.
- Q23. The depth below the surface of sea to which a rubber ball be taken so as to decrease its volume by 0.02% is $\frac{m}{1000}$ m.

 (Take density of sea water = 10^3 kg m⁻³, Bulk modulus of rubber = 9×10^8 N m⁻², and g = 10 m s⁻²)
- **Q24.** A particle performs simple harmonic motion with amplitude A. Its speed is increased to three times at an instant when its displacement is $\frac{2A}{3}$. The new amplitude of motion is $\frac{nA}{3}$. The value of n is _____.
- Q25. A parallel plate capacitor with plate separation 5 mm is charged up by a battery. It is found that on introducing a dielectric sheet of thickness 2 mm, while keeping the battery connections intact, the capacitor draws 25% more charge from the battery than before. The dielectric constant of the sheet is
- **Q26.** Equivalent resistance of the following network is Ω .

- Q27. An electron moves through a uniform magnetic field $\vec{B} = B_0 \hat{i} + 2B_0 \hat{j}$ T. At a particular instant of time, the velocity of electron is $\vec{u} = 3\hat{i} + 5\hat{j}$ m s⁻¹. If the magnetic force acting on electron is $\vec{F} = 5e\hat{k}$ N, where e is the charge of electron, then the value of B_0 is _____ T.
- Q28. A small square loop of wire of side l is placed inside a large square loop of wire of side $LL = l^2$. The loops are coplanar and their centers coincide. The value of the mutual inductance of the system is $\sqrt{x} \times 10^{-7}$ H, where $x = 10^{-7}$ H, where
- **Q29.** Two waves of intensity ratio 1: 9 cross each other at a point. The resultant intensities at the point, when (a) Waves are incoherent is I_1 b Waves are coherent is I_2 and differ in phase by 60° . If $\frac{I_1}{I_2} = \frac{10}{x}$, then $x = \frac{10}{x}$.

MathonGo

Q30. The mass defect in a particular reaction is 0.4 g. The amount of energy liberated is $n \times 10^7$ kW h, where n = . (speed of light = 3×10^8 m s⁻¹)

Q31. The correct sequence of electron gain enthalpy of the elements listed below is

A. Ar B. Br C. F D. S

Choose the most appropriate from the options given below:

(1) C > B > D > A

- (2) A > D > B > C
- (3) A > D > C > B mathongo
- mathongo (4) D > C > B > A /// mathongo /// mathongo

Q32. The linear combination of atomic orbitals to form molecular orbitals takes place only when the combining atomic orbitals

A. have the same energy B. have the minimum overlap C. have same symmetry about the molecular axis D. have different symmetry about the molecular axis

Choose the most appropriate from the options given below:

(1) A, B, C only

(2) A and C only

(3) B, C, D only

(4) B and D only

Q33. For the given reaction, choose the correct expression of K_C from the following:

$$Fe^{3+}_{aq} + SCN_{aq}^{-} \rightleftharpoons \left(FeSCN_{aq}^{-}\right)^{2+}_{aq}$$

$$(1) K_{C} = \frac{FeSCN^{2+}}{Fe^{3} + SCN_{aq}^{-}}$$

$$(2) K_{C} = \frac{FeSCN^{2+}}{FeSCN^{2+}}$$

$$(3) K_{C} = \frac{FeSCN^{2+}}{Fe^{3} + SCN_{aq}^{-}}$$

$$(4) K_{C} = \frac{FeSCN^{2+}}{Fe^{3} + SCN_{aq}^{-}}$$

$$(1) K_C = \frac{FeSCN^{2+}}{Fe^{3+}SCN^{2}}$$

(2)
$$K_C = \frac{Fe^{3} + SCN^2}{FascN^2 + SCN^2 + SCN^2$$

(3)
$$K_C = \frac{FeSCN^{2+}}{Fe^{3+2}SCN^{-2}}$$

$$(4) K_C = \frac{FeSCN^{2+2}}{Fe^{3+}SCN^{2}}$$

Q34. Consider the oxides of group 14 elements SiO_2 , GeO_2 , SnO_2 , PbO_2 , CO and GeO. The amphoteric oxides are

- (1) GeO, GeO₂ mathongo /// mathongo (2) SiO₂, GeO₂ /// mathongo /// mathongo

 $(3) SnO_2$, PbO_2

(4) SnO₂, CO

Q35. A species having carbon with sextet of electrons and can act as electrophile is called

(1) carbon free radical

(2) carbanion

(3) carbocation

mothongo (4) pentavalent carbon mothongo // mothongo

Q36. 'Adsorption' principle is used for which of the following purification method?

(1) Extraction

(2) Chromatography

(3) Distillation

(4) Sublimation

Q37. Given below are two statements:

Statement I: IUPAC name of H0 - CH₂ - (CH₂)₃ - CH₂ - COCH₃ is 7-hydroxyheptan-2-one.

Statement II: 2-oxoheptan-7-ol is the correct IUPAC name for the above compound.

In the light of the above statements, Choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Both Statement I and Statement II are incorrect.
- (3) Both Statement I and Statement II are correct.
- (4) Statement I is incorrect but Statement II is correct.

MathonGo

Q38. Match List I with List II

LIST I (Technique)

LIST II (Application)

A. Distillation

- I. Separation of glycerol from spent-lye
- B. Fractional distillation
- II. Aniline Water mixture
- C. Steam distillation
- III. Separation of crude oil fractions
- D. Distillation under reduced pressure IV. Chloroform-Aniline

Choose the correct answer from the options given below: mathongo (1) A-IV, B-I, C-II, D-III

- (2) A-IV, B-III, C-II. D-I
- (3) A-I. B-II, C-IV, D-III on a
- mathongo (4) A-II, B-III. C-I, D-IV mathongo

Q39. The product (C) in the below mentioned reaction is:

$$CH_3 - CH_2 - CH_2 - Br \xrightarrow{KOH_{alc}} A \longrightarrow B \xrightarrow{KOH_{ag}} C$$

- (1) Propan-1-ol mathona (2) Propene on a

(3) Propyne

(4) Propan-2-ol

Q40. Identify the mixture that shows positive deviations from Raoult's Law

(1) $(CH_3)_2CO + C_6H_5NH_2$

(2) $CHCl_3 + C_6H_6$

- (3) CHCl₃ + (CH₃)₂CO
- mathongo (4) $(CH_3)_2CO + CS_2$ mathongo /// mathongo

Q41. The metals that are employed in the battery industries are A. Fe, B. Mn, C. Ni, D. Cr, E. Cd Choose the correct answer from the options given below:

- (1) B, C and E only
- mothonoo (2) A, B, C, D and E
- (3) A, B, C and D only

(4) B. D and E only

Q42. Identify the factor from the following that does not affect electrolytic conductance of a solution.

- (1) The nature of the electrolyte added.
- (2) The nature of the electrode used.
- (3) Concentration of the electrolyte.
 - (4) The nature of solvent used.

Q43. Integrated rate law equation for a first order gas phase reaction is given by (where P_i is initial pressure and P_t is total pressure at time t)

$$(1) k = \frac{2.303}{t} \times \log \frac{P_i}{2P_i - P_t}$$

$$(2) k = \frac{2.303}{t} \times \log \frac{2P_i}{2P_i - P_t}$$

$$(3) k = \frac{2.303}{t} \times \log \frac{2P_i}{2P_i - P_t}$$

$$(4) k = \frac{2.303}{t} \times \frac{P_i}{2P_i - P_t}$$

(2)
$$k = \frac{2.303}{t} \times \log \frac{2P_i}{2P_i - P_i}$$

(3)
$$k = \frac{2.303}{t} \times \log \frac{2P_i^t - P_t^t}{P_i}$$

(4)
$$k = \frac{2.303}{t} \times \frac{P_i}{2P_i - P_t}$$

Q44. Give below are two statements:

Statement-I: Noble gases have very high boiling points.

Statement-II: Noble gases are monoatomic gases. They are held together by strong dispersion forces. Because of this they are liquefied at very low temperature. Hence, they have very high boiling points.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true
- (2) Both Statement I and Statement II are true
- (3) Statement I is true but Statement II is false
- (4) Both Statement I and Statement II are false

Q45. Identify correct statements from below:

A. The chromate ion is square planar.

B. Dichromate	es are general	y prepare	d from ch	romates.	

- C. The green manganate ion is diamagnetic.
- D. Dark green coloured K₂MnO₄ disproportionates in a neutral or acidic medium to give permanganate.
- E. With increasing oxidation number of transition metal, ionic character of the oxides decreases.

Choose the correct answer from the options given below:

Q46. The correct statements from the following are:

- A. The strength of anionic ligands can be explained by crystal field theory.
- B. Valence bond theory does not give a quantitative interpretation of kinetic stability of coordination compounds.
- C. The hybridization involved in formation of $[Ni(CN)_4]^2$ complex is dsp^2 .
- D. The number of possible isomer(s) of cis- $[PtCl_2 (en)_2]^{2+}$ is one

Choose the correct answer from the options given below:

Q47. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: pK_a value of phenol is 10.0 while that of ethanol is 15.9.

Reason R: Ethanol is stronger acid than phenol.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is true but R is false
- (2) A is false but R is true mathongo
- (3) Both A and R are true and R is the correct explanation of A
- (4) Both A and R are true but R is NOT the correct explanation of A.
- **Q48.** Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: Alcohols react both as nucleophiles and electrophiles.

Reason R: Alcohols react with active metals such as sodium, potassium and aluminum to yield corresponding alkoxides and liberate hydrogen.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is false but R is true.
- (2) A is true but R is false.
- (3) Both A and R are true and R is the correct explanation of A
- (4) Both A and R are true but R is NOT the correct explanation of A
- Q49. The compound that is white in color is
 - (1) ammonium sulphide

(2) lead sulphate

(3) lead iodide

(4) ammonium arsinomolybdate

Q50. Match List I with List II

List-I

List-II

Glucose/NaHCO₃ / Δ Α.

I. Gluconic acid

Glucose/HNO₃ В.

II. No reaction

C. t Glucose/HI / Δ athongo /// mathon III. / n-hexane ongo /// mathongo /// mathongo
D. Glucose/Bromine water IV. Saccharic acid
Choose the correct answer from the options given below: mathongs /// mathongs /// mathongs
(1) A-IV, B-I, C-III, D-II (2) A-II, B-IV, C-III, D-I
(3) A-III, B-II, C-I, D-IV mathongo (4) A-I, B-IV, C-III, D-II mathongo (7) mathongo (8)
Q51. Number of moles of methane required to produce 22g $CO_{2(g)}$ after combustion is $x \times 10^{-2}$ moles. The value of x is
OI X IS
Q52. The ionization energy of sodium in kJ mol ⁻¹ . If electromagnetic radiation of wavelength 242 nm is just
sufficient to ionize sodium atom is(nearest integer)
Q53. The number of species from the following in which the central atom uses sp ³ hybrid orbitals in its bonding is
$\overline{\mathrm{NH_3}}$, $\mathrm{SO_2}$, $\mathrm{SiO_2}$, $\mathrm{BeCl_2}$, $\mathrm{CO_2}$, $\mathrm{H_2O}$, $\mathrm{CH_4}$, $\mathrm{BF_3}$ mathong W mathong W
Q54. Consider the following reaction at 298 K. $\frac{3}{2}O_{2g} \rightleftharpoons O_{3g}$. $K_p = 2.47 \times 10^{-29}$
$\Delta_{\rm r} G^0$ for the reaction is kJ. (Given R = 8.314 JK ⁻¹ mol ⁻¹)
Round off your answer to the nearest integer.
Q55. Number of alkanes obtained on electrolysis of a mixture of CH ₃ COONa and C ₂ H ₅ COONa is
Q55. Number of alkanes obtained on electrolysis of a mixture of CH_3COONa and C_2H_5COONa is Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is mathons of the substitution of th
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is mathons Q57. The 'Spin only' Magnetic moment for $\left[\text{Ni}\left(\text{NH}_3\right)_6\right]^{2+}$ is \times 10 ⁻¹ BM. (given = Atomic number of
Q56. One Faraday of electricity liberates x × 10 ⁻¹ gram atom of copper from copper sulphate, x is mathons Q57. The 'Spin only' Magnetic moment for [Ni (NH ₃) ₆] ²⁺ is × 10 ⁻¹ BM. (given = Atomic number of Ni : 28) Round off your answer to the nearest integer.
Q56. One Faraday of electricity liberates x × 10 ⁻¹ gram atom of copper from copper sulphate, x is mathonic mat
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is Q57. The 'Spin only' Magnetic moment for $\left[Ni\left(NH_3\right)_6\right]^{2+}$ is \times _ 10^{-1} BM. (given = Atomic number of Ni : _28) Round off your answer to the nearest integer. Q58
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is Q57. The 'Spin only' Magnetic moment for $\left[Ni\left(NH_3\right)_6\right]^{2+}$ is \times 10 $^{-1}$ BM. (given = Atomic number of Ni : 28) Round off your answer to the nearest integer. Q58. C_2H_5OH Product A $CH_2CH_3Br + NaOH$
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is Q57. The 'Spin only' Magnetic moment for $\left[\text{Ni}\left(\text{NH}_3\right)_6\right]^{2+}$ is \times 10 ⁻¹ BM. (given = Atomic number of Ni : 28) Round off your answer to the nearest integer. Q58.
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is Q57. The 'Spin only' Magnetic moment for $\left[Ni\left(NH_3\right)_6\right]^{2+}$ is \times 10 ⁻¹ BM. (given = Atomic number of Ni : 28) Round off your answer to the nearest integer. Q58. $C_2H_5OH \longrightarrow Product\ A$ $H_2O \longrightarrow Product\ B$
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is Q57. The 'Spin only' Magnetic moment for $\left[\text{Ni (NH}_3)_6\right]^{2+}$ is \times 10 $^{-1}$ BM. (given = Atomic number of Ni : 28) Round off your answer to the nearest integer. Q58. $C_2H_5OH \longrightarrow Product A$ $CH_3CH_2Br + NaOH \longrightarrow Product B$ The total number of hydrogen atoms in product A and product B is
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is Q57. The 'Spin only' Magnetic moment for $\left[\text{Ni}\left(\text{NH}_3\right)_6\right]^{2+}$ is \times 10 ⁻¹ BM. (given = Atomic number of Ni : 28) Round off your answer to the nearest integer. Q58. $C_2H_5OH \longrightarrow Product A$ $CH_3CH_2Br + NaOH \longrightarrow Product B$ The total number of hydrogen atoms in product A and product B is
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is Q57. The 'Spin only' Magnetic moment for $\left[\text{Ni (NH}_3)_6\right]^{2+}$ is \times 10 $^{-1}$ BM. (given = Atomic number of Ni : 28) Round off your answer to the nearest integer. Q58. $C_2H_5OH \longrightarrow Product A$ $CH_3CH_2Br + NaOH \longrightarrow Product B$ The total number of hydrogen atoms in product A and product B is
Q56. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is Q57. The 'Spin only' Magnetic moment for $[Ni(NH_3)_6]^{2+}$ is $\times 10^{-1}$ BM. (given = Atomic number of Ni : 28) Round off your answer to the nearest integer. Q58. $C_2H_5OH \longrightarrow Product A$ $CH_3CH_2Br + NaOH \longrightarrow H_2O \longrightarrow Product B$ The total number of hydrogen atoms in product A and product B is

JEE Main 2024 (31 Jan Shift 1) Question Paper

JEE Main Previous Year Paper MathonGo

The number of hydroxyl groups present in the product *P* is ______.

Q60. Molar mass of the salt from NaBr, NaNO₃, KI and CaF₂ which does not evolve coloured vapours on heating with concentrated H₂SO₄ is ____ g mol⁻¹, (Molar mass in _____ g mol⁻¹ : Na : 23, N : 14, K : 39, O : 16, Br : 80, I : 127, F : 19, Ca : 40 nathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q61. Let S be the set of positive integral values of a for which $\frac{ax^2 + 2a + 1x + 9a + 4}{x^2 + 8x + 32} < 0$, $\forall x \in \mathbb{R}$. Then, the number of elements in S is:

(1) 1 mathongo matho

Q62. For 0 < c < b < a, let $(a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b) = 0$ and $\alpha \ne 1$ be one of its root. Then, among the two statements

(I) If $\alpha \in -1$, 0, then b cannot be the geometric mean of a and c. ongo /// mathongo /// mathongo

(II) If $\alpha \in 0$, 1, then b may be the geometric mean of a and c.

(1) Both (I) and (II) are true (2) Neither (I) nor (II) is true

(4) Only (I) is true (3) Only (II) is true

Q63. The sum of the series $\frac{1}{1-3\cdot 1^2+1^4} + \frac{2}{1-3\cdot 2^2+2^4} + \frac{3}{1-3\cdot 3^2+3^4} + \dots$ up to 10 terms is

(1) $\frac{45}{109}$ (2) $-\frac{45}{109}$ (3) $\frac{55}{109}$ (4) $-\frac{55}{109}$

Q64. Let α , β , γ , $\delta \in Z$ and let $A\alpha$, β , B1, 0, $C\gamma$, δ and D1, 2 be the vertices of a parallelogram ABCD.

If $AB = \sqrt{10}$ and the points A and C lie on the line 3y = 2x + 1, then $2\alpha + \beta + \gamma + \delta$ is equal to

mathongo /// mathongo $\frac{(2)}{(4)}$ mathongo /// mathongo /// mathongo (1) 10(3) 12

Q65. If one of the diameters of the circle $x^2 + y^2 - 10x + 4y + 13 = 0$ is a chord of another circle C, whose center is the point of intersection of the lines 2x + 3y = 12 and 3x - 2y = 5, then the radius of the circle C is

/// mathongo /// mathongo (2) 4 mathongo /// mathongo /// mathongo $(1)\sqrt{20}$ $(4) \ 3\sqrt{2}$ (3)6

Q66. If the foci of a hyperbola are same as that of the ellipse $\frac{x^2}{9} + \frac{y^2}{25} = 1$ and the eccentricity of the hyperbola is $\frac{15}{8}$ times the eccentricity of the ellipse, then the smaller focal distance of the point $\sqrt{2}$, $\frac{14}{3}\sqrt{\frac{2}{5}}$ on the hyperbola,

JEE Main 2024 (31 Jan Shift 1)

JEE Main Previous Year Paper

Question Paper

MathonGo

is equal to a wind mathong with mathong with mathong with mathong with mathong and mathong with mathong and mathong with mathon with matho

(1) $7\sqrt{\frac{2}{5}} - \frac{8}{3}$ (2) $14\sqrt{\frac{2}{5}} - \frac{4}{3}$ (3) $14\sqrt{\frac{2}{5}} - \frac{16}{3}$ mathongo (4) $7\sqrt{\frac{2}{5}} + \frac{8}{3}$ mathongo (7) mathongo

Q67. $\lim_{x\to 0} \frac{e^{2\sin x} - 2\sin x - 1}{x^2}$ mathongo /// mathongo /// mathongo /// mathongo

(1) is equal to -1

mathongo (2) does not exist (4) is equal to 2 (2) mathongo (3) mathongo (3) is equal to 1

Q68. Let a be the sum of all coefficients in the expansion of $(1 - 2x + 2x^2)^{2023}$ $(3 - 4x^2 + 2x^3)^{2024}$ and

 $b = \lim_{x \to 0} \frac{\int_0^x \frac{\log 1 + t}{t^{2024} + 1} dt}{x^2}$. If the equations $cx^2 + dx + e = 0$ and $2bx^2 + ax + 4 = 0$ have a common root, where

 $c, d, e \in R$, then d : c : e equals

(1) 2 : 1 : 4 mathongo (2) 4 : 1 : 4 mathongo (3) 1 : 2 : 4 (4) 1 : 1 : 4

Q69.nathong x^3 /// $2x^2+1$ 1+3x mathong /// mathong /// mathong /// mathong If $fx = 3x^2 + 2$ 2x $x^3 + 6$ for all $x \in \mathbb{R}$, then 2f0 + f'0 is equal to

 $\frac{x^3 - x}{11.48} = \frac{4}{10.48} = \frac{4}{10.$ (1)48

(3)42

(3) 42 hathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q70. If the system of linear equations

x - 2y + z = -4 mathongo /// mathongo /// mathongo /// mathongo $2x + \alpha y + 3z = 5$

 $3x - y + \beta z = 3$ mathongo /// mathongo /// mathongo /// mathongo has infinitely many solutions, then $12\alpha + 13\beta$ is equal to

/// mathongo /// mathongo (2) 64 mathongo /// mathongo /// mathongo (1)60

(3)54

Q71. For $\alpha, \beta, \gamma \neq 0$. If $\sin^{-1}\alpha + \sin^{-1}\beta + \sin^{-1}\gamma = \pi$ and $\alpha + \beta + \gamma\alpha - \gamma + \beta = 3\alpha\beta$, then γ equal to (1) $\frac{\sqrt{3}}{2}$ (2) $\frac{1}{\sqrt{2}}$ (3) $\frac{\sqrt{3} \cdot 1}{2\sqrt{2}}$ 20 /// mathongo (4) $\sqrt{3}$ nathongo /// mathongo

Q72. If $fx = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$ and (fof) (x) = g(x), where $g: R - \frac{2}{3} \to R - \frac{2}{3}$, then (gogog) (4) is equal to $(1) - \frac{19}{20}$

O73.

(3)-4 mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Let gx be a linear function and $fx = \frac{1+x^{\frac{1}{x}}}{2+x}$, x > 0, is continuous at x = 0. If f'1 = f-1, then the value of

*g*3 is

JEE Main 2024 (31 Jan Shift 1)

JEE Main Previous Year Paper MathonGo

Question Paper

(1) $\frac{1}{3}\log_e \frac{4}{1}$ // mathongo // mathongo (2) $\frac{1}{3}\log_e \frac{4}{9} + 1$ go // mathongo // matho

Q74. The area of the region x, $y: y^2 \le 4x$, x < 4, $\frac{xyx - 1x - 2}{x - 3x - 4} > 0$, $x \ne 3$ is $(1) \frac{16}{2}$ $(2) \frac{64}{2}$

(3) $\frac{8}{3}$ (4) $\frac{32}{3}$ mathons (4) $\frac{32}{3}$ mathons (4) $\frac{32}{3}$ mathons (4) $\frac{32}{3}$ mathons (5) $\frac{32}{3}$ mathons (75). The solution curve of the differential equation $y\frac{dx}{dy} = x\log_e x - \log_e y + 1$, x > 0, y > 0 passing through the point (e, 1) is mathongo /// mathongo

(1) $\log_e \frac{y}{x} = x$ (2) $\log_e \frac{y}{x} = y^2$ (3) $\log_e \frac{x}{y} = y$ mathongo (4) $2\log_e \frac{x}{y} = y + 1$ mathongo (5) mathongo (7) mathongo (8)

Q76. Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} = \frac{\tan x + y}{\sin x \sec x - \sin x \tan x}$, $x \in 0$, $\frac{\pi}{2}$ satisfying the condition $y_{\frac{\pi}{4}}^{\frac{\pi}{4}} = 2$. Then, $y_{\frac{\pi}{3}}^{\frac{\pi}{3}}$ is $(1) \sqrt{3} 2 + \log_e \sqrt{3}$ $(3) \sqrt{3} 1 + 2\log_e 3$ $(2) \frac{\sqrt{3}}{2} 2 + \log_e 3$ $(4) \sqrt{3} 2 + \log 3$

Q77. Let $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$, $\vec{b} = 4\hat{i} + \hat{j} + 7\hat{k}$ and $\vec{c} = \hat{i} - 3\hat{j} + 4\hat{k}$ be three vectors. If a vectors \vec{p} satisfies $\vec{p} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{p} \cdot \vec{a} = 0$, then $\vec{p} \cdot \hat{i} - \hat{j} - \hat{k}$ is equal to (1) 24 ngo /// mathongo /// mathongo /// mathongo /// mathongo

(3)28

(4)32

Q78. The distance of the point Q(0, 2, -2) form the line passing through the point P(5, -4, 3) and perpendicular to the lines $\vec{r} = -3\hat{i} + 2\hat{k} + \lambda 2\hat{i} + 3\hat{j} + 5\hat{k}$, $\lambda \in \mathbb{R}$ and $\vec{r} = \hat{i} - 2\hat{j} + \hat{k} + \mu - \hat{i} + 3\hat{j} + 2\hat{k}, \quad \mu \in \mathbb{R} \text{ is}$

 $(1)\sqrt{86}$

/// mathongo /// mathongo $(2)\sqrt{20}$ mathongo /// mathongo /// mathongo

Q79. Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and 15 orange marbles, with replacement being made after each drawing. Then the probability, that first drawn marble is red and second drawn marble is white, is

 $(1) \frac{2}{25}$

 $(2) \frac{4}{25}$ 4 mathongo // mathongo //

Q80. Three rotten apples are accidently mixed with fifteen good apples. Assuming the random variable x to be the number of rotten apples in a draw of two apples, the variance of x is $\frac{1}{2}$ mothonic $\frac{1}{2}$ mothonic

(1) $\frac{37}{153}$ (3) $\frac{47}{153}$ ngo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q81. If α denotes the number of solutions of $1 - i^x = 2^x$ and $\beta = \frac{z}{\arg z}$, where $z = \frac{\pi}{4} 1 + i^4 \frac{1 - \sqrt{\pi} \cdot i}{\sqrt{\pi} + i} + \frac{\sqrt{\pi} - i}{1 + \sqrt{\pi} \cdot i}$, $i = \sqrt{-1}$, then the distance of the point α , β from the line 4x - 3y = 7 is _

Q82. The total number of words (with or without meaning) that can be formed out of the letters of the word athongo

"DISTRIBUTION" taken four at a time, is equal to _____.

Q83. In the expansion of $1 + x1 - x^21 + \frac{3}{x} + \frac{3}{x^2} + \frac{1}{x^3}$, $x \ne 0$, the sum of the coefficient of x^3 and x^{-13} is equal to

Q84. Let the foci and length of the latus rectum of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b be ± 5 , 0 and $\sqrt{50}$, respectively.

Then, the square of the eccentricity of the hyperbola $\frac{x^2}{b^2} - \frac{y^2}{a^2b^2} = 1$ equals

Q85. Let A = 1, 2, 3, 4 and R = (1, 2), (2, 3), (1, 4) be a relation on A. Let S be the equivalence relation on A such that $R \subset S$ and the number of elements in S is n. Then, the minimum value of n is ______

Q86. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $fx = \frac{4^x}{4^x + 2}$ and $M = \int_{fa}^{f1 - a} x \sin^4 x 1 - x dx$, $N = \int_{fa}^{f1 - a} \sin^4 x 1 - x dx$; $\alpha \neq \frac{1}{2}$. If $\alpha M = \beta N$, α , $\beta \in \mathbb{N}$, then the least value of $\alpha^2 + \beta^2$ is equal to ______

Q87. Let S = -1, ∞ and $f: S \to \mathbb{R}$ be defined as $fx = \int_{-1}^{x} e^t - 1^{11}2t - 1^5t - 2^7t - 3^{12}2t - 10^{61}dt$. Let p = Sum of square of the values of x, where fx attains local maxima on S. and q = Sum of the values of x, where fx attains local minima on S. Then, the value of $p^2 + 2q$ is ______

Q88. If the integral $525 \int_{0}^{\frac{\pi}{2}} \sin 2x \cos \frac{11}{2} x 1 + \cos \frac{5}{2} x^{\frac{1}{2}} dx$ is equal to $n\sqrt{2} - 64$, then *n* is equal to ______

Q89. Let \vec{a} and \vec{b} be two vectors such that $\vec{a} = 1$, $\vec{b} = 4$ and $\vec{a} \cdot \vec{b} = 2$. If $\vec{c} = 2\vec{a} \times \vec{b} - 3\vec{b}$ and the angle between \vec{b} and \vec{c} is α , then $192\sin^2\alpha$ is equal to ______

Q90. Let Q and R be the feet of perpendiculars from the point Pa, a, a on the lines x = y, z = 1 and x = -y, z = -1 respectively. If $\angle QPR$ is a right angle, then $12a^2$ is equal to _____

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

ANSWER	KEYS	muthurgo	///.	maria go	///.		go	///.	go go	///.	nama go
1. (2) nothon	2. (1)///	3. (1)	14.	4. (2) 10000	5. (2	mathon	6. (3)	/4.	7. (2)	14.	8. (2) hongo
9. (2)	10. (4)	11. (1)		12. (4)	13. ((3)	14. (4)	15. (2)		16. (1)
17. (4) athon	18. (3)	19. (1)		20. (3)	21. ((2)nathon	22. (6) ¹ /-	23. (18)		24. (7) ongo
25. (2)	26. (1)	27. (5)		28. (128)	29. ((13)	30. (1)	31. (2)		32. (2)
33. (1)	34. (3)	35. (3)		36. (2)	37. ((1)	38. (2)	39. (4)		40. (4)
41. (1) othon	42. (2)	43. (1)		44. (4)	45. ((4) _{nathon}	46. (4)//.	47. (1)		48. (4)
49. (2)	50. (2)	51. (50)		52. (494)	53. ((4)	54. (1	63)	55. (3)		56. (5)
57. (28) thon	58. (10)	59. (0)		60. (78) ngo	61. ((2)nathon	62. (1)	63. (4)		64. (4) ongo
65. (3)	66. (1)	67. (4)		68. (4)	69. ((3)	70. (4)	71. (1)		72. (4)
73. (4)	74. (4)	75. (3)		76. (1)	77. ((4) athon	78. (4)".	79. (4)		80. (4)
81. (3)	82. (3734	83. (118)		84. (51)	85. ((16) mathon	86. (5)//.	87. (27)		88. (176)
89. (48)	90. (12)										