
JEE Main 2024 (31 Jan Shift 2)

JEE Main Previous Year Paper

Question Paper

MathonGo

Q1. If two vectors \vec{A} and \vec{B} having equal magnitude R are inclined at an angle θ , then

$$(1) \vec{A} - \vec{B} = \sqrt{2} R \sin \frac{\theta}{2}$$

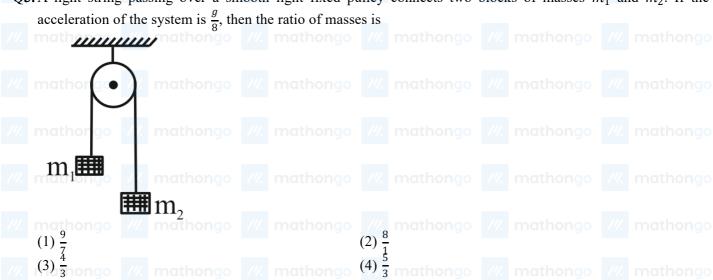
$$(2) \vec{A} + \vec{B} = 2R \sin \frac{\theta}{2}$$

$$(3) \vec{A} + \vec{B} = 2R \cos \frac{\theta}{2}$$

$$(4) \vec{A} - \vec{B} = 2R \cos \frac{\theta}{2}$$
mathonical mathon

$$(3) \vec{A} + \vec{B} = 2R\cos\frac{\theta}{2}$$

- Q2. Consider two physical quantities A and B related to each other as $E = \frac{B x^2}{At}$ where E, x and t have dimensions of energy, length and time respectively. The dimension of AB is // mathongo /// mathongo (2) $L^2M^{-1}T^1$ ongo /// mathongo /// mathongo


(1)
$$L^{-2}M^1T^0$$

(2)
$$L^2 M^{-1} T^2$$

$$(3) L^{-2} M^{-1} T^1$$

$$(4) L^0 M^{-1} T^1$$

Q3. A light string passing over a smooth light fixed pulley connects two blocks of masses m_1 and m_2 . If the

Q4. A block of mass 5 kg is placed on a rough inclined surface as shown in the figure. If \vec{F}_1 is the force required to just move the block up the inclined plane and \vec{F}_2 is the force required to just prevent the block from sliding down, then the value of $\vec{F}_1 - \vec{F}_2$ is: [Use $g = 10 \text{ m} \text{ s}^{-2}$] mathongo matho

kg begins to move under the action of a time dependent force given by Q5. A body of mass 2 N. The power developed by the force at the time t is given by: $\vec{F} = 6t \hat{i} + 6t^2 \hat{i}$

(1)
$$6t^4 + 9t^5$$
 W

(2)
$$3t^3 + 6t^5$$
 W

(3)
$$9t^5 + 6t^3$$
 W

$$(4) 9t^3 + 6t^5 \text{ W}$$

Q6	. The mass of the	he moon is $\frac{1}{1}$	$\frac{1}{44}$ times the	e mass of a plane	t and its diamete	$r \frac{1}{16} time$	es the diameter of	of a planet. If the	e
	escape velocit	y on the plan	net is v, the	escape velocity of	on the moon will	be:			

(1) $\frac{v}{3}$ nongo /// mathongo /// mathongo (2) $\frac{v}{4}$ mathongo /// mathongo (3) $\frac{v}{4}$

Q7. A small spherical ball of radius r, falling through a viscous medium of negligible density has terminal velocity v. Another ball of the same mass but of radius 2r, falling through the same viscous medium will have terminal velocity:

 $(1)^{\frac{\nu}{2}}$

Q8. A gas mixture consists of 8 moles of argon and 6 moles of oxygen at temperature T. Neglecting all vibrational modes, the total internal energy of the system is

(1) 29 RT(3) 27 RT

Q9. The speed of sound in oxygen at S.T.P. will be approximately: athonogo. /// mathonogo (Given, R = 8.3 J K⁻¹, $\gamma = 1.4$)

(1) 310 m s⁻¹ mathongo /// mathongo (2) 333 m s⁻¹ // mathongo /// $(4) 325 \text{ m s}^{-1}$ $(3) 341 \text{ m s}^{-1}$

Q10. Force between two point charges q_1 and q_2 placed in vacuum at r cm apart is F. Force between them when placed in a medium having dielectric K = 5 at $\frac{r}{5}$ cm apart will be:

(2) 5*F* athongo ///. (1) $\frac{F}{\frac{25}{5}}$ (3) $\frac{F}{5}$ (4) 25F

Q11. By what percentage will the illumination of the lamp decrease if the current drops by 20%?

(1)46%mathongo (2) 26% mongo /// mathongo (3) 36%

Q12. The resistance per centimeter of a meter bridge wire is r, with $X \cap \Omega$ resistance in left gap. Balancing length from left end is at 40 cm with 25 Ω resistance in right gap. Now the wire is replaced by another wire of 2rresistance per centimeter. The new balancing length for same settings will be at mathonical

(1) 20 cm(2) 10 cm

/// mathongo /// mathongo (4) 40n cm ongo /// mathongo /// (3) 80 cm

Q13. A uniform magnetic field of 2×10^{-3} T acts along positive Y-direction. A rectangular loop of sides 20 cm and 10 cm with current of 5 A is in Y-Z plane. The current is in anticlockwise sense with reference to negative X axis. Magnitude and direction of the torque is:

(1) 2×10^{-4} N m along positive Z –direction (2) 2×10^{-4} N m along negative Z-direction

(3) 2×10^{-4} N m along positive X-direction (4) 2×10^{-4} N m along positive Y-direction

Q14. An AC voltage $V = 20\sin 200\pi t$ is applied to a series LCR circuit which drives a current $I = 10\sin 200\pi t + \frac{\pi}{2}$. The average power dissipated is:

/// (1) 21 - (W/ /// ///	(2) 200 - 141				
(1) 21.6 W mathongo mathongo (3) 173.2 W	(2) 200 Wongo (4) 50 W				
	/// mathongo				
Statement I: Electromagnetic waves carry energy as	they travel through	space	and this energ	y is e	qually shared
by the electric and magnetic fields.					
Statement II: When electromagnetic waves strike a s	surface, a pressure is	exer	ted on the surfa	ce.	
In the light of the above statements, choose the most	appropriate answer	from	the options giv	en be	elow: thongo
(1) Statement I is incorrect but Statement II is	(2) Both Statement	t I and	d Statement II a	re co	rrect
///. matcorrect ///. mathongo ///. mathongo					
(3) Both Statement I and Statement II are incorrect	(4) Statement I is o	correc	t but Statement	II is	
	// incorrect				
Q16. When unpolarized light is incident at an angle of 6	ino an a transparant	madi	ium from oir T	'ha ra	effected may is
completely polarized. The angle of refraction in the	444	mea	mathongo	110 10	mathonge
(1) 30°	(2) 60°				
	(4) 45° athongo				
Q17. In a photoelectric effect experiment a light of freque the surface of photosensitive material. Now if the free	Mathondo		mathonao		
the surface of photosensitive material. Now if the free photo electrons emitted will be: (1) Doubled (3) Zero	Mathondo		ensity is double		e number of
the surface of photosensitive material. Now if the free photo electrons emitted will be: (1) Doubled (3) Zero	equency is halved ar (2) Quadrupled (4) Halved	nd into	ensity is double	ed, the	mathong
the surface of photosensitive material. Now if the free photo electrons emitted will be: (1) Doubled (3) Zero Q18. The mass number of nucleus having radius equal to (1) 24	(2) Quadrupled (4) Halved half of the radius of	nd into	ensity is double	ed, the	mathong
the surface of photosensitive material. Now if the free photo electrons emitted will be: (1) Doubled (3) Zero	equency is halved ar (2) Quadrupled (4) Halved	nd into	ensity is double	ed, the	mathong
the surface of photosensitive material. Now if the free photo electrons emitted will be: (1) Doubled (3) Zero Q18. The mass number of nucleus having radius equal to (1) 24	(2) Quadrupled (4) Halved half of the radius of (2) 32 (4) 20	nd into	ensity is double	ed, the	mathong
the surface of photosensitive material. Now if the free photo electrons emitted will be: (1) Doubled (3) Zero Q18. The mass number of nucleus having radius equal to (1) 24 (3) 40 Q19. The output of the given circuit diagram is	(2) Quadrupled (4) Halved half of the radius of (2) 32 (4) 20	nucle	mathongo eus with mass n mathongo	umbe	mathongo mathongo er 192 is: mathongo
the surface of photosensitive material. Now if the free photo electrons emitted will be: (1) Doubled (3) Zero Q18. The mass number of nucleus having radius equal to: (1) 24 (3) 40	(2) Quadrupled (4) Halved half of the radius of (2) 32 (4) 20	nucle	mathongo eus with mass n mathongo	umbe	mathongo mathongo er 192 is: mathongo
the surface of photosensitive material. Now if the free photo electrons emitted will be: (1) Doubled (3) Zero Q18. The mass number of nucleus having radius equal to (1) 24 (3) 40 Q19. The output of the given circuit diagram is	(2) Quadrupled (4) Halved half of the radius of (2) 32 (4) 20	nucle	mathongo mathongo mathongo mathongo mathongo mathongo mathongo	umbe	mathongo mathongo mathongo mathongo mathongo mathongo mathongo
the surface of photosensitive material. Now if the free photo electrons emitted will be: (1) Doubled (3) Zero Q18. The mass number of nucleus having radius equal to (1) 24 (3) 40 Q19. The output of the given circuit diagram is	(2) Quadrupled (4) Halved half of the radius of (2) 32 (4) 20 mathongo mathongo	nucle	mathongo mathongo mathongo mathongo mathongo mathongo mathongo mathongo	umbe	mathongo mathongo mathongo mathongo mathongo mathongo mathongo mathongo mathongo

JEE Main 2024 (31 Jan Shift 2) Question Paper

JEE Main Previous Year Paper MathonGo

$^{(1)}$ A B Y		$^{(2)}$ A B Y	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c c} mathor & 1 & 0 \\ 1 & 1 & 1 \end{array} $		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
// (3) A B Y		(4) $\Delta \mid \mathbf{R} \mid \mathbf{V}$	
		(1) $A \mid D \mid 1$	
0 0 0	_	0 0 0	
	_	0 0 0	
	mathongo	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Q20. The measured value of the length of a simple pendulum is 20 cm with 2 mm accuracy. The time for 50 oscillations was measured to be 40 seconds with 1 second resolution. From these measurements, the accuracy in the measurement of acceleration due to gravity is N%. The value of N is:

(1)4

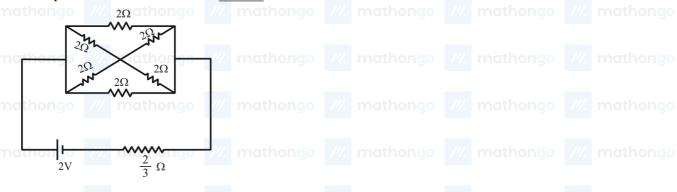
(2) 8

(3) 6

- ///. mathongo ///. mathongo (4) 5 mathongo ///. mathongo ///.
- Q21. Two identical spheres each of mass 2 kg and radius 50 cm are fixed at the ends of a light rod so that the separation between the centers is 150 cm. Then, moment of inertia of the system about an axis perpendicular to the rod and passing through its middle point is $\frac{x}{20}$ kg m², where the value of x is
- Q22. A body of mass m is projected with a speed u making an angle of 45° with the ground. The angular momentum of the body about the point of projection, at the highest point is expressed as $\frac{\sqrt{2}mu^3}{Xg}$. The value of X is
- Q23. Two blocks of mass 2 kg and 4 kg are connected by a metal wire going over a smooth pulley as shown in figure. The radius of wire is 4.0×10^{-5} m and Young's modulus of the metal is 2.0×10^{11} N m⁻². The longitudinal strain developed in the wire is $\frac{1}{\alpha\pi}$. The value of α is _____. [Use g = 10 m s⁻²)

Q24. The time period of simple harmonic motion of mass M in the given figure is $\pi \sqrt{\frac{\alpha M}{5K}}$, where the value of α is

JEE Main 2024 (31 Jan Shift 2) Question Paper


JEE Main Previous Year Paper MathonGo

Q25. The distance between charges +q and -q is 2l and between +2q and -2q is 4l. The electrostatic potential at point P at a distance r from centre O is $-\alpha \frac{ql}{r^2} \times 10^9$ V, where the value of α is _____. (Use $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9$ N m² C⁻²)

Q26. In the following circuit, the battery has an emf of 2 V and an internal resistance of $\frac{2}{3}$ Ω . The power consumption in the entire circuit is _____ W.

Q27. Two circular coils P and Q of 100 turns each have same radius of π cm. The currents in P and R are 1 A and 2 A respectively. P and Q are placed with their planes mutually perpendicular with their centers coincide. The resultant magnetic field induction at the center of the coils is \sqrt{x} mT, where x =_____. [Use $\mu_0 = 4\pi \times 10^{-7}$ T m A^{-1}]

Q28. The magnetic flux ϕ (in weber) linked with a closed circuit of resistance 8 Ω varies with time (in seconds) as $\phi = 5t^2 - 36t + 1$. The induced current in the circuit at t = 2 s is _____ A.

Q29. Light from a point source in air falls on a convex curved surface of radius 20 cm and refractive index 1.5. If the source is located at 100 cm from the convex surface, the image will be formed at ____ cm from the object.

JEE Main 2024 (31 Jan Shift 2)

Question Paper

JEE Main Previous Year Paper MathonGo

Q30. A nucleus has mass number A_1 and volume V_1 . Another nucleus has mass number A_2 and volume V_2 . If relation between mass number is $A_2 = 4A_1$, then $\frac{V_2}{V_1} =$

Q31. A sample of CaCO₃ and MgCO₃ weighed 2 .21 g is ignited to constant weight of 1 .152 g. The composition of the mixture is:

(Given molar mass in g mol^{-1} , CaCO_3 : 100, MgCO_3 : 84)

- Q32. The four quantum numbers for the electron in the outer most orbital of potassium (atomic no. 19) are
 - (1) $n = 4, l = 2, m = -1, s = +\frac{1}{2}$ (2) $n = 4, l = 0, m = 0, s = +\frac{1}{2}$ (3) $n = 3, l = 0, m = -1, s = +\frac{1}{2}$ (4) $n = 2, l = 0, m = 0, s = +\frac{1}{2}$

Q33. Consider the following elements.

Group A'B' \longrightarrow Period mathongo /// C'D'thongo /// mathongo /// mathongo /// mathongo /// mathongo

Which of the following is/are true about A, B, C and D? mathongo mathongo

- A. Order of atomic radii: B' < A' < D' < C
- B. Order of metallic character: B' < A' < D' < C'
- C. Size of the element : D' < C' < B' < A'
- D. Order of ionic radii : $B^{'+} < A^{'+} < D^{'+} < C^{'+}$

Choose the correct answer from the options given below:

(1) A only

- (2) A, B and D only
- (3) A and B only mothongo // mothongo
- (4) B, C and D only
- Q34. Which of the following is least ionic?
 - (1) BaCl₂

(2) AgCl

(3) KCl

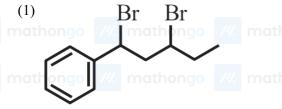
- (4) CoCl₂ mothongo /// mathongo
- Q35. $A_g \rightleftharpoons B_g + \frac{C}{2^g}$. The correct relationship between K_P , α and equilibrium pressure P is $(1) \ K_P = \frac{\alpha^{\frac{1}{2}P^{\frac{1}{2}}}}{2 + \alpha_2^{\frac{1}{2}}}$ $(2) \ K_P = \frac{\alpha^{\frac{3}{2}P^{\frac{1}{2}}}}{2 + \alpha_2^{\frac{1}{2}} 1 \alpha}$ $(3) \ K_P = \frac{\alpha^{\frac{7}{2}P^{\frac{7}{2}}}}{2 + \alpha_2^{\frac{3}{2}}}$ $(4) \ K_P = \frac{\alpha^{\frac{7}{2}P^{\frac{7}{2}}}}{2 + \alpha_2^{\frac{3}{2}}}$ $(4) \ K_P = \frac{\alpha^{\frac{7}{2}P^{\frac{7}{2}}}}{2 + \alpha_2^{\frac{3}{2}}}$

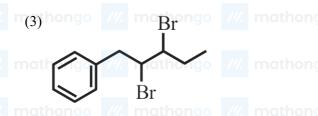
- **Q36.** Given below are two statements:

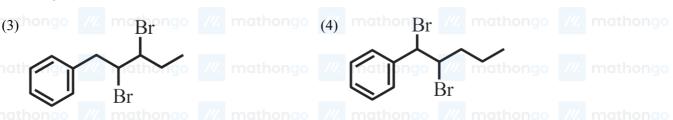
Statement I: S_8 solid undergoes disproportionation reaction under alkaline conditions to form S^{2-} and $S_2O_3^{2-}$ Statement II: ClO₄ can undergo disproportionation reaction under acidic condition.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but statement II is incorrect.
- (2) Statement I is incorrect but statement II is correct
- (3) Both statement I and statement II are incorrect
- (4) Both statement I and statement II are correct

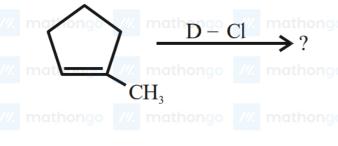

Q37. Given below are two statements: // mathongo // mathongo // mathongo // mathongo


Statement I: Group 13 trivalent halides get easily hydrolysed by water due to their covalent nature.

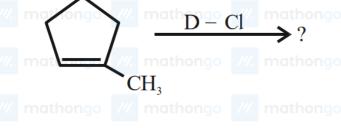

Statement II: AlCl₃ upon hydrolysis in acidified aqueous solution forms octahedral AlH₂O₆³⁺ ion. In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but statement II is false
- (2) Statement I is false but statement II is true
- (3) Both statement I and statement II are false
- (4) Both statement I and statement II are true

Q38. Identify structure of 2, 3-dibromo-1-phenylpentane.

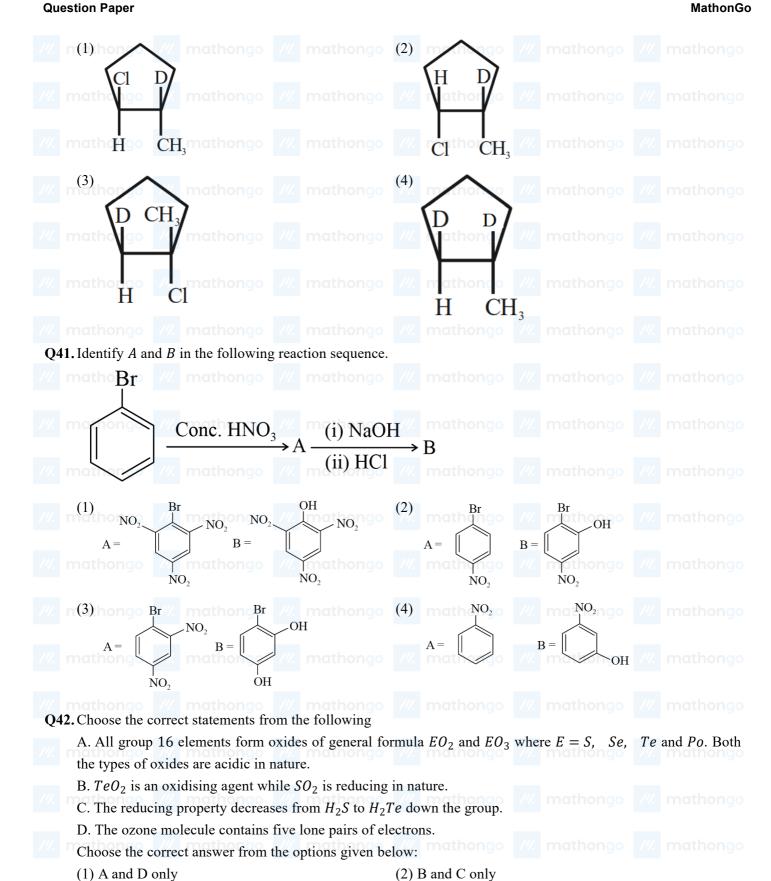


Q39. The fragrance of flowers is due to the presence of some steam volatile organic compounds called essential oils. These are generally insoluble in water at room temperature but are miscible with water vapour in the vapour phase. A suitable method for the extraction of these oils from the flowers is:


- (1) crystallisation mathongo /// mathongo (2) distillation under reduced pressure /// mathongo
- (3) distillation

(4) steam distillation

Q40. Major product of the following reaction is:



JEE Main 2024 (31 Jan Shift 2)

(3) C and D only

JEE Main Previous Year Paper

(4) A and B only

MathonGo

Q43. Choose the correct statements from the following mathongs mathongs

- A. Mn_2O_7 is an oil at room temperature B. V_2O_4 reacts with acid to give VO_2^{2+}
- C. CrO is a basic oxide D. V_2O_5 does not react with acid mathons with acid mathons of mathons of the contract of the cont

Choose the correct answer from the options given below:

(1) A, B and D only

(2) A and C only

(3) A, B and C only

(4) B and C only

Q44. Select the option with correct property:

- (1) $NiCO_4$ and $NiCl_4^2$ both diamagnetic
- (2) $NiCO_4$ and $NiCl_4^2$ both paramagnetic
- (3) NiCl₄² diamagnetic, NiCO₄ paramagnetic
- (4) NiCO₄ diamagnetic, NiCl₄² paramagnetic though

Q45. Match List I with List II

LIST – I

(Electronic

(Complex ion)

Configuration

A. $CrH_2O_6^{3+}$

I. $t_{2q}^2 e_q^0$

B. $FeH_2O_6^{3+}$

II. $t_{2g}^3 e_g^0$

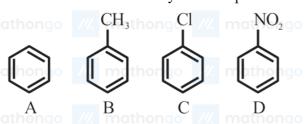
C. $NiH_2O_6^{2+}$

III. $t_{2g}^3 e_g^2$

D. $VH_2O_c^{3+}$

IV. $t_{2g}^6 e_g^2$

Choose the correct answer from the options given below:

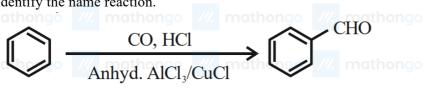

(1) A-III, B-II, C-IV, D-I

(2) A-IV, B-I, C-II, D-III

(3) A-IV, B-III, C-I, D-II

(4) A-II, B-III, C-IV, D-I

Q46. The correct order of reactivity in electrophilic substitution reaction of the following compounds is:


(1) B > C > A > D

(2) D > C > B > A

(3) A > B > C > D

(4) B > A > C > D

Q47. Identify the name reaction.

(1) Stephen reaction

(2) Etard reaction

(3) Gatterman-koch reaction

(4) Rosenmund reduction

Q48. Identify major product 'P' formed in the following reaction.

mathongo // mathon

mathongo /// mathongo // mathongo // mathongo /// mathongo /// mathongo /// mathong

Q49. The azo-dye Y formed in the following reactions is Sulphanilic acid + NaNO₂ + CH₃COOH \rightarrow X mathomatic

(3)
$$HSO_3 \longrightarrow O \longrightarrow N = N \longrightarrow O \longrightarrow NH_2$$
 mathons (4) $HSO_3 \longrightarrow O \longrightarrow N = N \longrightarrow O \longrightarrow NH_2$ mathons

Q50. Given below are two statements:

Statement I: Aniline reacts with con. H₂SO₄ followed by heating at 453 - 473 K gives p-aminobenzene sulphonic acid, which gives blood red colour in the 'Lassaigne's test'.

Statement II: In Friedel - Craft's alkylation and acylation reactions, aniline forms salt with the AlCl₃ catalyst. Due to this, nitrogen of aniline acquires a positive charge and acts as deactivating group.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but statement II is true
- (2) Both statement I and statement II are false
- (3) Statement I is true but statement II is false
- (4) Both statement I and statement II are true

Q51. The molarity of 1L orthophosphoric acid H_3PO_4 having 70% purity by weight (specific gravity 1 .54 g cm⁻³) is _____ M. (Molar mass of $H_3PO_4 = 98$ g mol⁻¹)

Q52. A diatomic molecule has a dipole moment of 1.2 D. If the bond distance is 1\AA , then fractional charge on each atom is _____ × 10^{-1} esu. (Given $1\text{D} = 10^{-18}$ esu cm)

MathonGo

condition then work, w, is $-x$ J. The value of x is - (Given R = 8.314 J K ⁻¹ mol ⁻¹) Q54. Number of isomeric products formed by monochlorination of 2-methylbutane in presence of sunlight is Q55. The values of conductivity of some materials at 298.15 K in Sm ⁻¹ are 2.1×10^3 , 1.0×10^{-16} , $1.2 \times 10,3.91$, 1.5×10^{-2} , 1×10^{-7} , 1.0×10^3 . The number of conductors among the materials is	Q53. If 5 moles of an ideal gas expands from 10L to a	volume of 100L at 300K under isothermal and reversible
Q54. Number of isomeric products formed by monochlorination of 2-methylbutane in presence of sunlight is $\frac{1}{2}$. When the product of the materials at 298.15 K in Sm ⁻¹ are 2.1×10^3 , 1.0×10^{-16} , 1.2×10 , 3.91 , 1.5×10^{-2} , 1×10^{-7} , 1.0×10^3 . The number of conductors among the materials is Q56. r = kA for a reaction, 50% of A is decomposed in 120 minutes. The time taken for 90% decomposition of A is minutes. Q57. Number of moles of H ⁺ ions required by 1 mole of MnO ₄ to oxidise oxalate ion to CO ₂ is Q58. In the reaction of potassium dichromate, potassium chloride and sulfuric acid (cone.), the oxidation state of the chromium in the product is + Q59. A compound x with molar mass $108g$ mol ⁻¹ undergoes acetylation to give product with molar mass $192g$ mol ⁻¹ . The number of amino groups in the compound x is Q60. From the vitamins A , B_1 , B_6 , B_{12} , C , D , E and K , the number vitamins that can be stored in our body is Q61. The number of solutions, of the equation $e^{\sin x} - 2e^{-\sin x} = 2$ is (1) 2 (2) more than 2 (3) 1 (4) 0 Q62. Let z_1 and z_2 be two complex number such that $z_1 + z_2 = 5$ and $z_1^3 + z_2^3 = 20 + 15i$. Then $z_1^4 + z_2^4$ equals-(1) $30\sqrt{3}$ (2) 75 (4) $25\sqrt{3}$ Q63. The number of ways in which 21 identical apples can be distributed among three children such that each child gets at least 2 apples, is (1) 406 (2) 130 (3) 142 (4) 166 (3) 142 (4) 166 (2) 130 (3) 142 (4) 166 (6) 166 (7) 166 (8) 166 (8) 166 (9) 166 (9) 166 (1) 166 (1) 166 (1) 166 (2) 166 (3) 166 (3) 166 (4) 166 (5) 166 (7) 166 (6) 166 (7) 166 (8) 166 (8) 166 (9) 166 (1) 166 (1) 166 (1) 166 (1) 166 (1) 166 (1) 166 (1) 166 (1) 166 (1) 166 (1) 166 (1) 166 (1) 166 (2) 166 (1) 166 (1) 166 (2) 166 (3) 166 (3) 166 (4) 166 (6) 166 (7) 166 (7) 166 (8) 166 (8) 166 (8) 166 (9) 166 (9) 166 (1) 166 (1) 166 (1) 166 (1) 1	condition then work, w, is $-x$ J. The value of x is -	
Q55. The values of conductivity of some materials at 298.15 K in Sm ⁻¹ are 2.1×10^3 , 1.0×10^{-16} , 1.2×10 , 3.91 , 1.5×10^{-2} , 1×10^{-7} , 1.0×10^3 . The number of conductors among the materials is		
2.1 × 10³, 1.0 × 10 ⁻¹⁶ , 1.2 × 10, 3.91, 1.5 × 10 ⁻² , 1 × 10 ⁻⁷ , 1.0 × 10³. The number of conductors among the materials is		
 Q56. r = kA for a reaction, 50% of A is decomposed in 120 minutes. The time taken for 90% decomposition of A is minutes. Q57. Number of moles of H⁺ ions required by 1 mole of MnO₄⁻ to oxidise oxalate ion to CO₂ is Q58. In the reaction of potassium dichromate, potassium chloride and sulfuric acid (conc.), the oxidation state of the chromium in the product is + Q59. A compound x with molar mass 108g mol⁻¹ undergoes acetylation to give product with molar mass 192g mol⁻¹. The number of amino groups in the compound x is Q60. From the vitamins A, B₁, B₆, B₁₂, C, D, E and K, the number vitamins that can be stored in our body is Q61. The number of solutions, of the equation e^{sinx} − 2e^{-sinx} = 2 is (1) 2 (2) more than 2 (3) 1 (4) 0 Q62. Let z₁ and z₂ be two complex number such that z₁ + z₂ = 5 and z₁³ + z₂³ = 20 + 15i. Then z₁⁴ + z₂² equals-(1) 30√3 (2) 75 (3) 15√15 (4) 25√3 Q63. The number of ways in which 21 identical apples can be distributed among three children such that each child gets at least 2 apples, is (1) 406 (2) 130 (3) 142 (4) 136 Q64. Let 2nd, 8th and 44th, terms of a non-constant A, P, be respectively the 1st, 2nd and 3rd terms of G, P. If the first term of A, P, is 1 then the sum of first 20 terms is equal to (1) 980 (2) 960 (3) 990 (4) 970 Q65. If for some m, n; ⁶ C_m + 2⁶C_{m+1} + ⁶C_{m+2} > ⁸C₃ and ⁿ⁻¹P₃; ⁿP₄ = 1:8, then ⁿP_{m+1} + ⁿ⁺¹C_m is equal to (1) 380 (2) 376 	2.1×10^3 , 1.0×10^{-16} , $1.2 \times 10, 3.91$, 1.1	1.5×10^{-2} , 1×10^{-7} , 1.0×10^{3} . The number of
Q58. In the reaction of potassium dichromate, potassium chloride and sulfuric acid (conc.), the oxidation state of the chromium in the product is $+$	Q56. $r = kA$ for a reaction, 50% of A is decomposed in 1	20 minutes. The time taken for 90% decomposition of A is
chromium in the product is $+$ and the product with molar mass $108g \text{ mol}^{-1}$ undergoes acetylation to give product with molar mass $192g \text{ mol}^{-1}$. The number of amino groups in the compound x is Q60. From the vitamins $A, B_1, B_6, B_{12}, C, D, E$ and K , the number vitamins that can be stored in our body is Q61. The number of solutions, of the equation $e^{\sin x} - 2e^{-\sin x} = 2$ is Q62. Let z_1 and z_2 be two complex number such that $z_1 + z_2 = 5$ and $z_1^3 + z_2^3 = 20 + 15i$. Then $z_1^4 + z_2^4$ equals (1) $30\sqrt{3}$	Q57. Number of moles of H ⁺ ions required by 1 mole of l	MnO_4^- to oxidise oxalate ion to CO_2 is
Q60. From the vitamins A , B_1 , B_6 , B_{12} , C , D , E and E , the number vitamins that can be stored in our body is Q61. The number of solutions, of the equation $e^{\sin x} - 2e^{-\sin x} = 2$ is (1) 2		
Q61. The number of solutions, of the equation $e^{\sin x} - 2e^{-\sin x} = 2$ is (1) 2 (2) more than 2 (3) 1 (4) 0 Q62. Let z_1 and z_2 be two complex number such that $z_1 + z_2 = 5$ and $z_1^3 + z_2^3 = 20 + 15i$. Then $z_1^4 + z_2^4$ equals- (1) $30\sqrt{3}$ (2) 75 (3) $15\sqrt{15}$ (4) $25\sqrt{3}$ Q63. The number of ways in which 21 identical apples can be distributed among three children such that each child gets at least 2 apples, is (1) 406 (2) 130 (3) 142 (4) 136 Q64. Let 2^{nd} , 8^{th} and 44^{th} , terms of a non-constant $A.P.$ be respectively the 1^{st} , 2^{nd} and 3^{rd} terms of $G.P.$ If the first term of $A.P.$ is 1 then the sum of first 20 terms is equal to- (1) 980 (2) 960 (3) 990 (4) 970 Q65. If for some m , n ; ${}^6C_m + 2{}^6C_{m+1} + {}^6C_{m+2} > {}^8C_3$ and ${}^{n-1}P_3$; ${}^nP_4 = 1$: 8, then ${}^nP_{m+1} + {}^{n+1}C_m$ is equal to (1) 380 (2) 376		
(1) 2 (2) more than 2 (3) 1 (4) 0 (4) 0 (4) 0 (4) 0 (4) 0 (4) 0 (4) 0 (4) 0 (4) 0 (4) 0 (4) 0 (4) 0 (4) 0 (4) $2 + 2 = 5$ and $2 = 20 + 15i$. Then $2 = 20 $	Q60. From the vitamins A , B_1 , B_6 , B_{12} , C , D , E and K , the r	number vitamins that can be stored in our body is
(3) 1 (4) 0 Q62. Let z_1 and z_2 be two complex number such that $z_1 + z_2 = 5$ and $z_1^3 + z_2^3 = 20 + 15i$. Then $z_1^4 + z_2^4$ equals- (1) $30\sqrt{3}$ (2) 75 (3) $15\sqrt{15}$ (4) $25\sqrt{3}$ Q63. The number of ways in which 21 identical apples can be distributed among three children such that each child gets at least 2 apples, is (1) 406 (2) 130 (3) 142 (4) 136 Q64. Let 2^{nd} , 8^{th} and 44^{th} , terms of a non-constant $A.P.$ be respectively the 1^{st} , 2^{nd} and 3^{rd} terms of $G.P.$ If the first term of $A.P.$ is 1 then the sum of first 20 terms is equal to- (1) 980 (2) 960 (3) 990 (4) 970 Q65. If for some m , n ; ${}^{6}C_{m} + 2{}^{6}C_{m+1} + {}^{6}C_{m+2} > {}^{8}C_{3}$ and ${}^{n-1}P_{3}$: ${}^{n}P_{4} = 1$: 8 , then ${}^{n}P_{m+1} + {}^{n+1}C_{m}$ is equal to (1) 380 (2) 376	Q61. The number of solutions, of the equation $e^{\sin x} - 2e^{-x}$	$-\sin x = 2$ is
Q62. Let z_1 and z_2 be two complex number such that $z_1 + z_2 = 5$ and $z_1^3 + z_2^3 = 20 + 15i$. Then $z_1^4 + z_2^4$ equals—(1) $30\sqrt{3}$ (2) 75 (3) $15\sqrt{15}$ (4) $25\sqrt{3}$ Q63. The number of ways in which 21 identical apples can be distributed among three children such that each child gets at least 2 apples, is (1) 406 (2) 130 (3) 142 (4) 136 Q64. Let $2^{\rm nd}$, $8^{\rm th}$ and $44^{\rm th}$, terms of a non-constant $A.P.$ be respectively the $1^{\rm st}$, $2^{\rm nd}$ and $3^{\rm rd}$ terms of $G.P.$ If the first term of A.P. is 1 then the sum of first 20 terms is equal to—(1) 980 (2) 960 (3) 990 (4) 970 Q65. If for some m , n ; $6 C_m + 2^6 C_{m+1} + ^6 C_{m+2} > ^8 C_3$ and $n - 1P_3$: $n P_4 = 1: 8$, then $n P_{m+1} + ^{n+1} C_m$ is equal to—(1) 380 (2) 376	///. n(1) 2 ongo ///. mathongo ///. mathongo	(2) more than 2 // mathongo // mathongo
(1) $30\sqrt{3}$ (2) 75 (3) $15\sqrt{15}$ (4) $25\sqrt{3}$ (2) 75 (4) $25\sqrt{3}$ (2) 75 (4) $25\sqrt{3}$ (5) 75 (6) 75 (7) 75 (8) 75 (9) 75 (9) 75 (9) 75 (9) 75 (1) 75 (1) 75 (1) 75 (2) 75 (3) 75 (4) 75 (5) 75 (7) 75 (8) 75 (8) 75 (9) 75 (1) 75 (1) 75 (1) 75 (1) 75 (2) 75 (2) 75 (3) 75 (2) 75 (3) 75 (4) 75 (2) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (2) 75 (3) 75 (3) 75 (4) 75 (2) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (3) 75 (4) 75 (5) 75 (6) 75 (7) 75 (7) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (9) 75 (9) 75 (1) 75 (1) 75 (1) 75 (2) 75 (3) 75 (4) 75 (3) 75 (4) 75 (5) 75 (6) 75 (7) 75 (7) 75 (8) 75	(3) 1	(4) 0
(1) $30\sqrt{3}$ (2) 75 (3) $15\sqrt{15}$ (4) $25\sqrt{3}$ (2) 75 (4) $25\sqrt{3}$ (2) 75 (4) $25\sqrt{3}$ (5) 75 (6) 75 (7) 75 (8) 75 (9) 75 (9) 75 (9) 75 (9) 75 (1) 75 (1) 75 (1) 75 (2) 75 (3) 75 (4) 75 (5) 75 (7) 75 (8) 75 (8) 75 (9) 75 (1) 75 (1) 75 (1) 75 (1) 75 (2) 75 (2) 75 (3) 75 (2) 75 (3) 75 (4) 75 (2) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (2) 75 (3) 75 (3) 75 (4) 75 (2) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (2) 75 (3) 75 (4) 75 (3) 75 (4) 75 (5) 75 (6) 75 (7) 75 (7) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (8) 75 (9) 75 (9) 75 (1) 75 (1) 75 (1) 75 (2) 75 (3) 75 (4) 75 (3) 75 (4) 75 (5) 75 (6) 75 (7) 75 (7) 75 (8) 75	Q62. Let z_1 and z_2 be two complex number such that z_1	$+z_2 = 5$ and $z_1^3 + z_2^3 = 20 + 15i$. Then $z_1^4 + z_2^4$ equals-
Q63. The number of ways in which 21 identical apples can be distributed among three children such that each child gets at least 2 apples, is (1) 406 (3) 142 (4) 136 Q64. Let 2^{nd} , 8^{th} and 44^{th} , terms of a non-constant $A.P.$ be respectively the 1^{st} , 2^{nd} and 3^{rd} terms of $G.P.$ If the first term of A.P. is 1 then the sum of first 20 terms is equal to- (1) 980 (2) 960 (3) 990 (4) 970 Q65. If for some m , n ; ${}^{6}C_{m} + 2{}^{6}C_{m+1} + {}^{6}C_{m+2} > {}^{8}C_{3}$ and ${}^{n-1}P_{3}$; ${}^{n}P_{4} = 1$: 8, then ${}^{n}P_{m+1} + {}^{n+1}C_{m}$ is equal to (1) 380 (2) 376	$(1) 30\sqrt{3}$	(2) 75
gets at least 2 apples, is (1) 406 (3) 142 (4) 136 Q64. Let 2^{nd} , 8^{th} and 44^{th} , terms of a non-constant $A.P.$ be respectively the 1^{st} , 2^{nd} and 3^{rd} terms of $G.P.$ If the first term of A.P. is 1 then the sum of first 20 terms is equal to- (1) 980 (2) 960 (3) 990 (4) 970 Q65. If for some m , n ; ${}^{6}C_{m} + 2{}^{6}C_{m+1} + {}^{6}C_{m+2} > {}^{8}C_{3}$ and ${}^{n-1}P_{3}$: ${}^{n}P_{4} = 1$: 8, then ${}^{n}P_{m+1} + {}^{n+1}C_{m}$ is equal to (1) 380 (2) 376	$(3) 15\sqrt{15}$ mathongo $\frac{1}{2}$ mathongo	(4) $25\sqrt{3}$ honge /// mathonge /// mathonge
(1) 406 (2) 130 (4) 136 Q64. Let 2^{nd} , 8^{th} and 44^{th} , terms of a non-constant $A.P.$ be respectively the 1^{st} , 2^{nd} and 3^{rd} terms of $G.P.$ If the first term of $A.P.$ is 1 then the sum of first 20 terms is equal to- (1) 980 (2) 960 (3) 990 (4) 970 Q65. If for some m , n ; ${}^{6}C_{m} + 2{}^{6}C_{m+1} + {}^{6}C_{m+2} > {}^{8}C_{3}$ and ${}^{n-1}P_{3}$: ${}^{n}P_{4} = 1$: 8, then ${}^{n}P_{m+1} + {}^{n+1}C_{m}$ is equal to (1) 380 (2) 376	7. Hadrongo 7. Hadrongo 7. Hadrango	an be distributed among three children such that each child
Q64. Let 2^{nd} , 8^{th} and 44^{th} , terms of a non-constant $A.P.$ be respectively the 1^{st} , 2^{nd} and 3^{rd} terms of $G.P.$ If the first term of A.P. is 1 then the sum of first 20 terms is equal to- (1) 980 (2) 960 (3) 990 (4) 970 Q65. If for some m , n ; ${}^{6}C_{m} + 2{}^{6}C_{m+1} + {}^{6}C_{m+2} > {}^{8}C_{3}$ and ${}^{n-1}P_{3}$: ${}^{n}P_{4} = 1$: 8, then ${}^{n}P_{m+1} + {}^{n+1}C_{m}$ is equal to (1) 380 (2) 376		(2) 130
the first term of A.P. is 1 then the sum of first 20 terms is equal to- (1) 980 (2) 960 (3) 990 (4) 970 Q65. If for some m , n ; ${}^{6}C_{m} + 2{}^{6}C_{m+1} + {}^{6}C_{m+2} > {}^{8}C_{3}$ and ${}^{n-1}P_{3}$: ${}^{n}P_{4} = 1$: 8, then ${}^{n}P_{m+1} + {}^{n+1}C_{m}$ is equal to (1) 380 (2) 376	(3) 142	(4) 136
(1) 980 (2) 960 (3) 990 (4) 970 (4) 970 (2) 376 (2) 376		
(3) 990 (4) 970 $ \mathbf{Q65.1f \text{ for some } m, \ n; \ ^{6}C_{m} + 2^{6}C_{m+1} + ^{6}C_{m+2} > ^{8}C_{3} \text{ and } ^{n-1}P_{3} : ^{n}P_{4} = 1:8, \text{ then } ^{n}P_{m+1} + ^{n+1}C_{m} \text{ is equal to } } $ (1) 380 (2) 376		
(1) 380 (2) 376		
(1) 380 (2) 376	Q65. If for some m , n ; ${}^{6}C_{m} + 2{}^{6}C_{m+1} + {}^{6}C_{m+2} > {}^{8}C_{m}$	a and $n-1P_3$: $P_4 = 1: 8$, then $P_{m+1} + n+1C_m$ is equal to
	(3) 384	(4) 372

Q66. Let Aa, b, B3, 4 and -6, -8 respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point P2a + 3, 7b + 5 from the line 2x + 3y - 4 = 0 measured parallel to the line x - 2y - 1 = 0 is more mathonical. (2) $\frac{17\sqrt{5}}{6}$ (a) $\frac{17\sqrt{5}}{17}$ athongo /// mathongo /// mathongo /// mathongo

Q67. Let a variable line passing through the centre of the circle $x^2 + y^2 - 16x - 4y = 0$, meet the positive coordinate axes at the point A and B. Then the minimum value of OA + OB, where O is the origin, is equal to

- (3) 20
- /// mathongo /// mathongo /// mathongo /// mathongo

Q68. Let P be a parabola with vertex 2, 3 and directrix 2x + y = 6. Let an ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{k^2} = 1$, a > bof eccentricity $\frac{1}{\sqrt{L}}$ pass through the focus of the parabola P. Then the square of the length of the latus rectum go 🚧 mathongo 🚧 mathongo 🎋 mathongo 🎋 mathongo 🎋 mathongo of E, is

- (1) $\frac{385}{8}$ (2) $\frac{347}{8}$ (3) $\frac{512}{25}$ 190 /// mathongo // mathongo //

Q69. Let $f: \to R \to 0, \infty$ be strictly increasing function such that $\lim_{x \to \infty} \frac{f^{7x}}{f^x} = 1$. Then, the value of $\lim_{x \to \infty} \frac{f^{5x}}{f^x} - 1$ is equal to

- ongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q70. Let the mean and the variance of 6 observation a, b, 68, 44, 48, 60 be 55 and 194, respectively if a > b, then a + 3b is

- mathongo /// mathongo (2) 190 athongo /// mathongo /// mathongo

A - 3I y = 2 has athongo 3. mathongo ///. mathongo ///. mathongo

(1) unique solution

(2) exactly two solutions

(3) no solution

(4) infinitely many solutions

Q72. If $a = \sin^{-1}\sin 5$ and $b = \cos^{-1}\cos 5$, then $a^2 + b^2$ is equal to

- $(1) 4\pi^2 + 25$ mathons (2) $8\pi^2 40\pi + 50$ mathons
- $(3) 4\pi^2 20\pi + 50$

(4)25

Q73. If the function $f: -\infty$, $-1 \to a$, b defined by $fx = e^{x^3 - 3x + 1}$ is one-one and onto, then the distance of the point P2b + 4, a + 2 from the line $x + e^{-3}y = 4$ is:

(1) $2\sqrt{1+e^6}$

(2) $4\sqrt{1+e^6}$

(3) $3\sqrt{1+e^6}$

(4) $\sqrt{1+e^6}$

MathonGo

Q74. Consider the function $f: 0, \infty \to R$ defined by $fx = e^{-\log_e x}$. If m and n be respectively the number of points at which f is not continuous and f is not differentiable, then m + n is

- // mathongo /// mathongo (2) 3 mathongo /// mathongo /// mathongo
- (3) 1

(4) 2

Q75. Let f, g: 0, $\infty \to R$ be two functions defined by $fx = \int_{-x}^{x} t - t^2 e^{-t^2} dt$ and $gx = \int_{0}^{x^2} t^{\frac{1}{2}} e^{-t^2} dt$. Then the value of $9f\sqrt{\log_e 9} + g\sqrt{\log_e 9}$ is equal to (2) 9 mathongo /// mathongo

(1) 6

(3)8

Q76. The area of the region enclosed by the parabola $y = 4x - x^2$ and $3y = x - 4^2$ is equal to

- (3)6
- mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Q77. The temperature Tt of a body at time t = 0 is 160° F and it decreases continuously as per the differential equation $\frac{dT}{dt} = -KT - 80$, where *K* is positive constant. If $T15 = 120^{\circ}$ *F*, then T45 is equal to

(1) 85° *F*(2) 95° *F* longo (2) 95° mathongo (3) mathongo (4)

 $(3) 90^{\circ} F$

 $(4) 80^{\circ}$

Q78. Let α , β , γ be mirror image of the point 2, 3, 5 in the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$. Then $2\alpha + 3\beta + 4\gamma$ is equal to

- mathongo $\frac{(2)}{(4)}$ mathongo $\frac{(2)}{(4)}$ mathongo $\frac{(2)}{(4)}$ mathongo $\frac{(2)}{(4)}$ mathongo
- (3)31

Q80. A coin is biased so that a head is twice as likely to occur as a tail. If the coin is tossed 3 times, then the probability of getting two tails and one head is-

 $(1)\frac{2}{9}$

(4) \frac{1}{27}\text{mathongo} \tag{//.} \text{mathongo} \tag{//.} \text{mathongo} **Q81.** Let a, b, c be the length of three sides of a triangle satisfying the condition $a^2 + b^2x^2 - 2ba + c$ $x + b^2 + c^2 = 0$. If the set of all possible values of x is in the interval α , β , then $12\alpha^2 + \beta^2$ is equal to

Q82. Let the coefficient of x^r in the expansion of $x+3^{n-1}+x+3^{n-2}x+2+x+3^{n-3}x+2^2+\ldots+x+2^{n-1}$ be α_r . If $\sum_{r=0}^n \alpha_r = \beta^n - \gamma^n$, β , $\gamma \in N$, then the value of $\beta^2 + \gamma^2$ equals _____.

Q83. Let A-2, -1, B1, 0, $C\alpha$, β and $D\gamma$, δ be the vertices of a parallelogram ABCD. If the point C lies on 2x - y = 5 and the point D lies on 3x - 2y = 6, then the value of $\alpha + \beta + \gamma + \delta$ is equal to _____.

Q84. If $\lim_{x \to 0} \frac{ax^2e^x - b\log_e 1 + x + cxe^{-x}}{x^2\sin x} = 1$, then $16a^2 + b^2 + c^2$ is equal to _____.

Q	85. Let $A = 1, 2,$	3,100 .	Let R be a	relation on A de	fined by x ,	$t \mid y \in R \text{ if } a$	and only if $2x =$	$3y$. Let R_1	be a
	symmetric re	lation on A	such that R	$\subset R_1$ and the nu	ımber of el	ements in F	R_1 is n . Then the	minimum v	value of
	n is ongo	·/// math							
Q				2. If $n = \det a$			the remainder when mathons		
	is equal to _								
OS	$\frac{\pi}{120} \int_{0}^{\pi} x^2 \sin x \cos x$	math	ongo //						

$\frac{120}{\pi^3} \int_0^{1} \frac{\pi^3}{\sin^4}$	$\frac{dx}{dx + \cos^4 x} dx$ 15	s equal to _	·					
000 I at 11 -	w ho the go	lution of th	a differenti	al equation sec	2xdx 1 o2Vtax	2x + tanx	π π	Λ

Q88. Let
$$y = yx$$
 be the solution of the differential equation $\sec^2 x dx + e^{2y} \tan^2 x + \tan x dy = 0$, $0 < x < \frac{\pi}{2}, y \frac{\pi}{4} = 0$.

If $y \frac{\pi}{6} = \alpha$, then $e^{8\alpha}$ is equal to _____.

Q89. Let $\vec{a} = 3\hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and \vec{c} be a vector such that $\vec{a} + \vec{b} \times \vec{c} = 2\vec{a} \times \vec{b} + 24\hat{j} - 6\hat{k}$ and

Q89. Let
$$\vec{a} = 3\hat{i} + 2\hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and \vec{c} be a vector such that $\vec{a} + \vec{b} \times \vec{c} = 2\vec{a} \times \vec{b} + 24\hat{j} - 6\hat{k}$ and $\vec{a} - \vec{b} + \hat{i} \cdot \vec{c} = -3$. Then \vec{c}^2 is equal to athono. Mathono

Q90. A	A line	passes through $A4$, -6 , -2 and $B16$, -2 , 4 . The point Pa , b , c where a , b , c are non-negative integers,
0	n the	line AB lies at a distance of 21 units, from the point A. The distance between the points Pa, b, c and
	1	12.2 %

//		go	77.		77.		Igo	77.	marine go	7%	n in
ANSWER	KEYS										
1. (3) _{nathon}	2. (2)	3. (1)		4. (2)	5. (4)	matho	6. (1)) ///.	ma7.(1)go		8. (3) hongo
9. (1)	10. (2)	11. (3)		12. (4)	13. (2	2)	14. (4)	15. (2)		16. (1)
17. (3) othon	18. (1)	19. (3)		20. (3)	21. (5	53)athor	22. (8)	23. (12)		24. (12)
25. (27)	26. (3)	27. (20)		28. (2)	29. (2	200)	30. (4)	31. (1)		32. (2) mathonao
33. (2)	34. (2)	35. (2)		36. (1)	37. (4	4)	38. (3)	39. (4)		40. (3)
41. (1) athon	42. (4)	43. (2)		44. (4)	45. (4	1) natho	46. (4	4)	47. (3)		48. (4)
49. (4)	50. (4)	51. (11)		52. (0)	53. (-	-28721)	54. (5)	55. (4)		56. (399)
57. (8) athon	58. (6)	59. (2)		60. (5) ongo		4)natho			ma 63. (4)		64. (4) ongo
65. (4)	66. (3)	67. (2)		68. (4)	69. (2	matho	70. (111	71. (1)		72. (2)
73. (1)	74. (3)	75. (3)		76. (3)	77. (3		78. (2	_	79. (3)		80. (1)
81. (36)	82. (25)	83. (32)		84. (81)	85. (6	66) matho	86. (7)	87. (15)		88. (9)
89. (38)	90. (22)										