JEE Main 2025 January

(3) 3

ole main 2020 bandary	mathone
Q1. The distance of the line $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4}$ from the (1) $\sqrt{17}$	e point $(1,4,0)$ along the line $\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3}$ is : athongo $(2) \sqrt{15}$
//. (3) $\sqrt{14}$ rgo ///. mathongo ///. mathongo	(4) $\sqrt{13}$ athongo /// mathongo /// mathongo
Q2. Let $A = \{(x,y) \in \mathbf{R} \times \mathbf{R} : x+y \geqslant 3\}$ and $B = \{(x,y) \in A \cap B : x = 0 \text{ or } y = 0\}$, then $\sum_{(x,y) \in A} (1) 15$	x+y is: mathongo mathongo mathongo (2) 24
Q3. Let $X=\mathbf{R} imes\mathbf{R}$. Define a relation R on X as : $(a_1,$	
	nents, choose the correct answer from the options given
(1) Both Statement I and Statement II are false (3) Both Statement I and Statement II are true	(2) Statement I is true but Statement II is false(4) Statement I is false but Statement II is true
Q4. Let $\int x^3 \sin x dx = g(x) + C$, where C is the constant	
$8\left(g\left(\frac{\pi}{2}\right)+g'\left(\frac{\pi}{2}\right)\right)=\alpha\pi^3+\beta\pi^2+\gamma,\alpha,\beta,\gamma\in Z,$ (1) 48 (3) 62 mathongo	then $\alpha + \beta - \gamma$ equals : (2) 55 mathongo /// mathongo (4) 47
Q5. A rod of length eight units moves such that its ends	A and B always lie on the lines $x-y+2=0$ and
y+2=0, respectively. If the locus of the point P , t	
$9\left(x^2+\alpha y^2+eta xy+\gamma x+28y ight)-76=0$, then $lpha=0$	$-\beta - \gamma$ is equal to : mathongo mathongo mathongo
	(4) 24 nathongo /// mathongo /// mathongo
m, n are coprime numbers, then $m + n$ is equal to :	es $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z+3}{-3}$ and $\frac{x+1}{2} = \frac{y+3}{4} = \frac{z+5}{-5}$ is $\frac{m}{n}$, where (2) 9 (4) 6 mathongo
(3) 14 ongo /// mathongo /// mathongo	(4) 6 mathongo /// mathongo
Q7. $\lim_{x\to\infty} \frac{(2x^2-3x+5)(3x-1)^{\frac{x}{2}}}{(3x^2+5x+4)\sqrt{(3x+2)^x}}$ is equal to :	/// mathongo /// mathongo
	(2) $\frac{2e}{\sqrt{3}}$ (4) $\frac{2e}{3}$ mathongo /// mathongo
Q8. Let the point A divide the line segment joining the p	oints $P(-1,-1,2)$ and $Q(5,5,10)$ internally in the ratio

r:1(r>0). If O is the origin and $(\overrightarrow{OQ}\cdot\overrightarrow{OA})-\frac{1}{5}|\overrightarrow{OP}\times\overrightarrow{OA}|^2=10$, then the value of r is: (1) $\sqrt{7}$ ngg (2) 14 nathongg (2) 14 nathongg (3) mathongg (4)

(4)7

JEE Main Previous Year Paper

JEE Main 2025 January MathonGo

Q9. The length of the chord of the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$, whose mid-point is $(1, \frac{1}{2})$, is: 100000 Mathematical m

 $(1) \frac{5}{3} \sqrt{15}$

- (3) $\frac{2}{3}\sqrt{15}$ \circ /// mathongo /// mathongo /// mathongo /// mathongo

Q10.

$$x + y + z = 6$$

The system of equations x + 2y + 5z = 9, has no solution if thought we mathematically mathematically mathematical mathe

$$x + 5y + \lambda z = \mu,$$

- (1) $\lambda = 15, \mu \neq 17$ (2) $\lambda \neq 17, \mu \neq 18$ (3) $\lambda = 17, \mu \neq 18$ (4) $\lambda = 17, \mu = 18$

Q11. Let the range of the function $f(x) = 6 + 16\cos x \cdot \cos\left(\frac{\pi}{3} - x\right) \cdot \cos\left(\frac{\pi}{3} + x\right) \cdot \sin 3x \cdot \cos 6x$, $x \in \mathbf{R}$ be $[\alpha, \beta]$. Then the distance of the point (α, β) from the line 3x + 4y + 12 = 0 is :

- (1) 11 ngo /// mathongo /// mathongo /// mathongo /// mathongo

(3) 10

Q12. Let x=x(y) be the solution of the differential equation $y=\left(x-y\frac{\mathrm{d}x}{\mathrm{d}y}\right)\sin\left(\frac{x}{y}\right), y>0$ and $x(1)=\frac{\pi}{2}$. Then $\cos(x(2))$ is equal to :

 $(1) 1 - 2(\log_e 2)^2$

(2) $1 - 2 (\log_e 2)$

 $(3) 2 (\log_e 2) - 1$

 $(4) \ 2(\log_e 2)^2 - 1$

Q13. A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm, the ice-cream melts at the rate of 81 cm³/min and the thickness of the ice-cream layer decreases at the rate of $\frac{1}{4\pi}$ cm/min. The surface area (in cm²) of the chocolate ball (without the icecream layer) is:

(1) 196π

(2) 256π

- (3) 225π
- /// mathongo /// mathongo (4) $128\pi_{ ext{thongo}}$ /// mathongo /// mathongo

Q14. The number of complex numbers z, satisfying |z| = 1 and $\left| \frac{z}{\bar{z}} + \frac{\bar{z}}{z} \right| = 1$, is : ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(3) 10

Let $A = [a_{ij}]$ be 3×3 matrix such that $A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $A \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $A \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, then a_{23} equals :

- n(3) longo /// mathongo /// mathongo /// mathongo /// mathongo

Q16. If $I = \int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{3}{2}} x}{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x} dx$, then $\int_0^{21} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$ equals:

- (1) $\frac{\pi^2}{12}$ (2) $\frac{\pi^2}{4}$ (1) $\frac{\pi^2}{16}$ (2) $\frac{\pi^2}{8}$ (2) $\frac{\pi^2}{8}$ (3) $\frac{\pi^2}{16}$ (4) $\frac{\pi^2}{8}$ (5) $\frac{\pi^2}{8}$ (6) $\frac{\pi^2}{8}$ (7) mathongo (7) mathongo (8) mathongo (8) mathongo (9) mathongo (10) mathongo (11) mathongo (11) mathongo (12) $\frac{\pi^2}{4}$ (13) $\frac{\pi^2}{16}$ (14) $\frac{\pi^2}{8}$ (15) $\frac{\pi^2}{16}$ (15) $\frac{\pi^2}{16}$ (16) $\frac{\pi^2}{16}$ (17) $\frac{\pi^2}{16}$ (18) $\frac{\pi^2}{16}$ (19) $\frac{\pi^2$

Q17. A board has 16 squares as shown in the figure:

Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common 1S: thongo

(1) 7/10

(3) 23/30

mathongo (4) 3/5 athongo /// mathongo ///

Q18. Let the shortest distance from (a, 0), a > 0, to the parabola $y^2 = 4x$ be 4. Then the equation of the circle passing through the point (a, 0) and the focus of the parabola, and having its centre on the axis of the parabola

$$x^2 + y^2 - 10x + 9 = 0$$
 go /// mathongo (2) $x^2 + y^2 - 6x + 5 = 0$ nathongo /// mathongo

(2)
$$x^2 + y^2 - 6x + 5 = 0$$

(3)
$$x^2 + y^2 - 4x + 3 = 0$$

$$(4) x^2 + y^2 - 8x + 7 = 0$$

Q19. If in the expansion of $(1+x)^p(1-x)^q$, the coefficients of x and x^2 are 1 and -2, respectively, then p^2+q^2 is equal to: ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(1) 18

(4) 20

Q20. If the area of the region $\{(x,y): -1 \le x \le 1, 0 \le y \le a + \mathrm{e}^{|x|} - \mathrm{e}^{-x}, \mathrm{a} > 0\}$ is $\frac{\mathrm{e}^2 + 8\mathrm{e} + 1}{\mathrm{e}}$, then the value of ais: nathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(1) 8

- (3)5
- ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q21. The variance of the numbers 8, 21, 34, 47, ..., 320 is

Q22. The roots of the quadratic equation $3x^2 - px + q = 0$ are 10^{th} and 11^{th} terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first 11 terms of this arithmetic progression is 88, then q-2p is equal to

Q23. The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is

Q24. The focus of the parabola $y^2 = 4x + 16$ is the centre of the circle C of radius 5. If the values of λ , for which C passes through the point of intersection of the lines 3x - y = 0 and $x + \lambda y = 4$, are λ_1 and $\lambda_2, \lambda_1 < \lambda_2$, then $12\lambda_1+29\lambda_2$ is equal to ______ mathongo _____ mathongo _____ mathongo

Q25. Let α, β be the roots of the equation $x^2 - ax - b = 0$ with $\text{Im}(\alpha) < \text{Im}(\beta)$. Let $P_n = \alpha^n - \beta^n$. If $P_3=-5\sqrt{7}i, P_4=-3\sqrt{7}i, P_5=11\sqrt{7}i$ and $P_6=45\sqrt{7}i$, then $|\alpha^4+\beta^4|$ is equal to

(1) μf (3) $\frac{f}{(\mu-1)}$

JEE Main Previous Year Paper MathonGo

·	
Q26. A galvanometer having a coil of resistance 30Ω need	d 20 mA of current for full-scale deflection. If a maximum
current of 3 A is to be measured using this galvanom	neter, the resistance of the shunt to be added to the
galvanometer should be $\frac{30}{X}\Omega$, where X is Options	
(1) 596	(2) 149
// n(3) 298 go /// mathongo /// mathongo	(4) 447 athongo /// mathongo /// mathongo
Q27. A ball having kinetic energy KE, is projected at an a	angle of 60° from the horizontal. What will be the kinetic
energy of ball at the highest point of its flight?	/// mathongo /// mathongo /// mathongo
(1) $\frac{\text{(KE)}}{8}$	(2) $\frac{(KE)}{2}$
(3) $\frac{(KE)}{16}$ (3) (4) mathongo (4) mathongo	(4) $\frac{(\overline{KE})}{4}$ thongo /// mathongo /// mathongo
Q28. Two charges $7\mu c$ and $-4\mu c$ are placed at $(-7 \text{ cm}, 0 \text{ cm})$, 0) and (7 cm, 0, 0) respectively. Given,
$\epsilon_0 = 8.85 imes 10^{-12} m C^2 \ N^{-1} \ m^{-2}$, the electrostatic potential $\epsilon_0 = 8.85 imes 10^{-12} m C^2 \ N^{-1} \ m^{-2}$	
(1) -1 8 I	(2) -2 0 I
(1) 1.0 3 (3) -1.5 J mathongo /// mathongo	(4) -1.2 J mathongo ///. mathongo
O29. Two point charges $-4\mu c$ and $4\mu c$, constituting an element	ectric dipole, are placed at $(-9,0,0)$ cm and $(9,0,0)$ cm in
The street of th	ork done on the dipole in rotating it from the equilibrium
through 180° is: mathongo /// mathongo	///. mathongo ///. mathongo ///. mathongo
(1) 18.4 mJ	(2) 14.4 mJ
(3) 12.4 mJ	(4) 16.4 mJ mathongo /// mathongo
Q30. A massless spring gets elongated by amount x_1 under	
of 7 N . For the elongation of $(5x_1 - 2x_2)$, the tensi	
(1) 39 N	(2) 15 N
/// n(3) 11 Ngo /// mathongo /// mathongo	(4) 20 Nuthongo /// mathongo /// mathongo
O31. Water of mass m gram is slowly heated to increase t	the temperature from T_1 to T_z The change in entropy of the
water, given specific heat of water is $1 \text{Jkg}^{-1} \text{ K}^{-1}$, is	
$(1) \mathrm{m} \ln \left(\frac{\mathrm{T}_2}{\mathrm{T}} \right)$	(2) zero
(3) $m \ln \left(\frac{T_1}{T_2}\right)$	(2) zero (4) m $(T_2 - T_1)$ mathongo /// mathongo
Q32. Water flows in a horizontal pipe whose one end is cl	losed with a valve. The reading of the pressure gauge
attached to the pipe is P_1 . The reading of the pressur	re gauge falls to P_2 when the valve is opened. The speed of
water flowing in the pipe is proportional to hongo	
(1) $P_1 - P_2$	(2) $(P_1 - P_2)^4$
$^{\prime\prime\prime}$ n(3) $(P_1 - P_2)^2$ / mathongo $^{\prime\prime\prime}$ / mathongo	(2) $(P_1 - P_2)^4$ (4) $\sqrt{P_1 - P_2}$ go /// mathongo /// mathongo
	n a liquid of refractive index μ . Its focal length in the liquid

(2) f $(4) \frac{f}{\mu}$

JEE Main Previous Year Paper MathonGo

(3) 0.25 A

- (4) 1.0 A
- Q35.5 The refractive index of the material of a glass prism is $\sqrt{3}$. The angle of minimum deviation is equal to the angle of the prism. What is the angle of the prism?
 - $(1) 60^{\circ}$

 $(2) 58^{\circ}$

 $(3) 48^{\circ}$

- $(4) 50^{\circ}$
- Q36. The width of one of the two slits in Young's double slit experiment is d while that of the other slit is x d. If the ratio of the maximum to the minimum intensity in the interference pattern on the screen is 9: 4 then what is the value of x? (Assume that the field strength varies according to the slit width.)
 - (1) 4

mathongo (2) 5 mathongo /// mathongo /// mathongo

(3) 3

Using the given P - V diagram, the work done by an ideal gas along the path ABCD is :

(1) $3P_0 V_0$

 $(2) - 4P_0 V_0$

 $(3) - 3P_0 V_0$

- (4) $4P_0 V_0$
- Q38. A plane electromagnetic wave of frequency 20 MHz travels in free space along the +x direction. At a particular point in space and time, the electric field vector of the wave is $E_y = 9.3 \text{Vm}^{-1}$. Then, the magnetic field vector of the wave at that point is
 - (1) $B_z = 6.2 \times 10^{-8} \text{ T}$
- (2) $B_z = 3.1 \times 10^{-8} \text{ T}$ (4) $B_z = 9.3 \times 10^{-8} \text{ T}$
- (3) $B_z = 1.55 \times 10^{-8} \text{ T}$

- **Q39.** The equation of a transverse wave travelling along a string is $y(x,t) = 4.0 \sin \left[20 \times 10^{-3} x + 600t \right] \text{mm}$, where x is in mm and t is in second. The velocity of the wave is :

JEE Main Previous Year Paper MathonGo

	(1) -60 m/s (3) $+30 m/s$			(2) -30 m/s (4) +60 m/s							
O ⁴	40. Given below are	two statements	. One is labelled as A	Assertion (A) and th	e other is labelled as	Reason	(R).				
					y independent of the						
	and and an area of the		///	///	force is long range.						
				ne options given belo							
	(1) (A) is true bu	at (R) is false /// mothongo (2) (A) is false but (R) is true thongo /// mothongo									
	(3) Both (\mathbf{A}) and	(\mathbf{R}) are true as	nd (\mathbf{R}) is the correc	et (4) Both (A) and (A)	R) are true but (R) is	NOT the	e				
	explanation o	$f(\mathbf{A})$ thongo		correct explana	ation of (A) hongo						
04	41. If a satellite orbit	ing the Earth is	9 times closer to th	e Earth than the Mo	on, what is the time	period of	f rotation				
117.		mathonao			avitational attraction	m m					
	satellite and the n		-	, ,							
	(1) 27 days	mathongo		(2) 1 day thongo							
	(3) 81 days			(4) 3 days							
///. ••••	mathongo //.	mathongo	mathongo	mathongo	mathongo axis perpendicular to	/// m	nathongo An				
Ų.					(t) is the angular pos						
					(v) is the angular positive applied torque, wh						
	(1) 72MR2	runetion of this	te v. How mach pow	(2) $8MR^2$	e applied torque, wh		ь.				
	(3) $108MR^2$			(4) $60MR^2$							
0			2 84		1.0 0.0 1 771		a.				
Q ²					nd $eta=0.3~\mathrm{s^{-1}}$. The						
		α and t are 1.2%	$\frac{7}{6}$ and 1.6 $\frac{7}{6}$, respect		aximum percentage e	rror in tr	ne energy				
	(1) 6%			(2) 8.4%							
	(3) 11.6%			(4) 4%							
	(3) 11.0/0			mathongo							
Q ²	44. Match List - I wit										
		mathongo List -	mathongo		List - II						
			neability of free spa	ace (I) $[M L^2 T]$	-2						
		mathanaa	netic field	$({ m II})^{ ext{L}} [{ m M} \ { m T}^{-2}]$							
		()	netic moment	(III) MLT							
		mathonao	ional constant	(IV) $[L^2 A]$	/// rhathongo						
		(2)		(11) [2 11]							
	Choose the correct	ct answer from	the options given be	elow: mathongo							
	(1) (A)-(IV), (B)-(IV)				II), (C)-(IV), (D)-(I)						
	(3) (A)-(I), (B)-(I)	V), (C)-(II), (D)-(III) mathongo	(4) (A) - (II) , (B) - (I)), (C)-(III), (D)-(IV)						

Q45. In photoelectric effect an em-wave is incident on a metal surface and electrons are ejected from the surface. If the work function of the metal is 2.14 eV and stopping potential is 2 V, what is the wavelength of the emwave? (Given hc = 1242 eVnm where h is the Planck's constant and c is the speed of light in vaccum.)

(1) 300 nm (3) 600 nm			(2) 400 nm ongo (4) 200 nm					
Q46. A time varying potential difference is applied between the plates of a parallel plate capacitor of capacitance 2.5μ F. The dielectric constant of the medium between the capacitor plates is 1. It produces an instantaneous displacement current of 0.25 mA in the intervening space between the capacitor plates, the magnitude of the rate of change of the potential difference will be Vs^{-1}.								
Q47. In a series LCR circuit, a resistor of 300Ω , a capacitor of 25 nF and an inductor of 100 mH are used. For maximum current in the circuit, the angular frequency of the ac source is $\times 10^4$ radians s ⁻¹ .								
/// surface tensi		density $10^3 \ \mathrm{kg/m^3}$.	h of 20 cm below the The difference betw m/s^2)					
Q49. A satellite of mass $\frac{M}{2}$ is revolving around earth in a circular orbit at a height of $\frac{R}{3}$ from earth surface. The angular momentum of the satellite is $M\sqrt{\frac{GMR}{x}}$. The value of x is, where M and R are the mass and radius of earth, respectively. (G is the gravitational constant)								
Q50. At steady sta	ate the charge on the	capacitor, as shown	in the circuit below,	is/ m μ C.ongo				
/// mathongo	mathongo 15 Ω							
/// mathor	///. matiMygo							
/// mathongo	mathongo							
· ·		, respectively in the	following reaction :					
// maron								
/// mathongo	(ii) H ⁺ /// mathongo	A A A A A A A A A A	$C_{r_2O_7}$ mathongo SO_4 mathongo					

JEE Main Previous Year Paper MathonGo

- respectively are:
 - (1) K_2CrO_4 and CrO though /// mothongo (2) K_2CrO_4 and Cr_2O_3 mothongo /// mothongo
 - (3) K_2CrO_4 and $K_2Cr_2O_7$ (4) $K_2Cr(OH)_6$ and Cr_2O_3

Q53. The effect of temperature on spontaneity of reactions are represented as:

	mathong (A)	ΔH +	ma ΔS ngo −	Temperat any T	wre Spontaneity Non	
	mathong (B))o ///.	mathongo +	/// mathongo	mathspontaneous spontaneous	
	(C)	jo_ ///.	mathongo	low T	Non mathons	
	(D)	-	+	any T	spontaneous	
	(3) (A) an	nd (D) o	•		(4) (A) and (C) only	
Q5	4. Which of				epresents a zero order reaction?	

JEE Main Previous Year Paper MathonGo

Q55. Consider the reaction $X_2Y(g) = X_2(g) + \frac{1}{2}Y_2(g)$ The equation representing correct relationship between the degree of dissociation (x) of $X_2Y(g)$ with its equilibrium constant Kp is ______. Assume x to be very

Q56. Given below are two statements: Consider the following reaction

Statement (I): In the case of formaldehyde

Statement (II): In the case of trichloro

due to - I effect of - Cl.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are false
- (2) Statement I is true but Statement II is false
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are true
- Q57. Given below are two statements: Statement (I): For a given shell, the total number of allowed orbitals is given by n^2 . Statement (II): For any subshell, the spatial orientation of the orbitals is given by -l to +l values including zero. In the light of the above statements, choose the correct answer from the options given below:
 - (1) Both Statement I and Statement II are false
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Statement I is false but Statement II is true

Q58. Standard electrode potentials for a few half cells are mentioned below:

$$\begin{split} E_{Cu^{2+}/Cu}^{\circ} &= 0.34 \ V, E_{Zn^{2+}/Zn}^{\circ} = -0.76 \ V \\ E_{Ag^{+}/Ag}^{\circ} &= 0.80 \ V, E_{Mg^{2+}/Mg}^{\circ} = -2.37 \ V \end{split} \\ \text{Which one of the following cells gives the most negative value of } \Delta G^{\circ}~? \end{split}$$

(1)
$$\operatorname{Zn} \left| \operatorname{Zn}^{2+}(1M) \right| \left| \operatorname{Ag}^{+}(1M) \right| \operatorname{Ag}^{-}$$

(2)
$$\operatorname{Zn}\left|\operatorname{Zn}^{2+}(1\mathrm{M})\right|\left|\operatorname{Mg}^{2+}(1\mathrm{M})\right|\operatorname{Mg}$$

(3)
$$Ag |Ag^{+}(1M)| |Mg^{2+}(1M)|Mg$$

(4)
$$Cu |Cu^{2+}(1M)||Ag^{+}(1M)||Ag$$

Q59. The α -Helix and β - Pleated sheet structures of protein are associated with its :

(1) tertiary structure

(2) quaternary structure

(3) secondary structure

(4) primary structure

JEE Main Previous Year Paper MathonGo

Q60. Given below are the atomic numbers of some group 14 elements. The atomic number of the element with ongo lowest melting point is:

- (1) 6
- mathongo ///. mathongo (2) 82 nathongo ///. mathongo ///. mathongo
- (3) 14

(4) 50

Q61. Given below are two statements about X-ray spectra of elements: Statement (I): A plot of \sqrt{v} (v = frequency of X-rays emitted) vs atomic mass is a straight line. Statement (II): A plot of v(v = frequency of X-rays emitted) vs atomic number is a straight line. In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true
- (2) Statement I is false but Statement II is true athonor
- (3) Both Statement I and Statement II are false
- (4) Statement I is true but Statement II is false

Q62. Identify A, B and C in the given below reaction sequence A $\xrightarrow{\text{HNO}_3}$ Pb(NO₃)₂ $\xrightarrow{\text{H}_2SO_4}$ B $\xrightarrow{\text{(1) Ammonium acctate}}$ (2) Acetic acid

(1) PbCl₂, PbSO₄, PbCrO₄

(2) PbS, PbSO₄, Pb(CH_3COO)₂

(3) PbCl₂, Pb(SO₄)₂, PbCrO₄

(4) PbS, $PbSO_4$, $PbCrO_4$

Q63. Given below are two statements: Statement (I): The boiling points of alcohols and phenols increase with increase in the number of C-atoms. Statement (II): The boiling points of alcohols and phenols are higher in comparison to other class of compounds such as ethers, haloalkanes. In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are false
- (2) Both Statement I and Statement II are true
- (3) Statement I is false but Statement II is true
- (4) Statement I is true but Statement II is false

Q64. Consider a binary solution of two volatile liquid components 1 and 2. x_1 and y_1 are the mole fractions of component 1 in liquid and vapour phase, respectively. The slope and intercept of the linear plot of $\frac{1}{x_1}$ vs $\frac{1}{y_1}$ are given respectively as:

 $(1) \frac{P_2^0}{P_1^0}, \frac{P_2^0 - P_1^0}{P_2^0}$

 $(2) \; \frac{P_1^0}{P_2^0}, \frac{P_2^0 - P_1^0}{P_2^0}$

(3) $\frac{P_1^0}{P_2^0}$, $\frac{P_1^0 - P_2^0}{P_2^0}$

 $(4) \frac{P_0^2}{P_1^0}, \frac{P_0^1 - P_0^0}{P_0^2}$

Q65. The ascending order of relative rate of solvolysis of following compounds is:

(1) (C) < (B) < (A) < (D)

(2) (D) < (A) < (B) < (C) though mathematical math

(3) (D) < (B) < (A) < (C)

(4) (C) < (D) < (B) < (A)

JEE Main Previous Year Paper MathonGo

JEE Main Previous Year Paper MathonGo

ANSWER KE	EYS	mather go	///.	mailar go	///.		go ///.	muningo	///.	namin go
1. (3) _{nathon} 2. ((4)///	3. (2)	14.	4. (2)	5. (3	mathon	6. (2) ///	7. (3)	111.	8. (4)
9. (3) 10.	. (3)	11. (1)		12. (4)	13. ((2)	14. (2)	15. (1)		16. (3)
17. (2) athon 18.	. (2)	mat 19. (2)		20. (3)	21. ((8788)	22. (474)	23. (1728	0)	24. (15)
25. (31) 26.	. (2)	27. (4)		28. (1)	29. ((2)	30. (3)	31. (1)		32. (4)
33. (2) 34.	. (2)	35. (1)		36. (2)	37. ((3)	38. (2)	39. (2)		40. (1)
41. (2) 42.	. (4)	43. (1)		44. (2)	45. (1) nathon	46. (100)	47. (2)		48. (2190)
49. (3) 50.	. (16)	51. (2)		52. (3)	53. ((1)	54. (1)	55. (2)		56. (4)
57. (3) athon 58.	. (1)	59. (3)		60. (4) ongo	61. ((3)nathon	62. (4) //	63. (2)		64. (2) ongo
65. (2) 66.	. (2)	67. (3)		68. (1)	69. (70. (4)	71. (100)		72. (27)
73. (153) 74.	. (200)	75. (4)								