TEST PAPER OF JEE(MAIN) EXAMINATION – 2019

(Held On Thrusday 10th JANUARY, 2019) TIME: 02: 30 PM To 05: 30 PM **CHEMISTRY**

- 1. An ideal gas undergoes isothermal compression from 5 m³ against a constant external pressure of 4 Nm⁻². Heat released in this process is used to increase the temperature of 1 mole of Al. If molar heat capacity of Al is 24 J mol^{-1} K^{-1} , the temperature of Al increases by:

 - (1) $\frac{3}{2}$ K (2) $\frac{2}{3}$ K
- (3) 1 K

Ans. (2)

- **Sol.** Work done on isothermal irreversible for ideal
 - $= -P_{\text{ext}} (V_2 V_1)$ = -4 N/m² (1m³ 5m³)
 - = 16 Nm

Isothermal process for ideal gas

- $\Delta U = 0$
- q = -w
- = -16 Nm
- = -16 J

Heat used to increase temperature of $A\ell$ $q = n C_m \Delta T$

$$16~J=1~\times~24~\frac{J}{mol.K}{\times}\Delta T$$

$$\Delta T = \frac{2}{3}K$$

2. The 71st electron of an element X with an atomic number of 71 enters into the orbital: (1) 4f(2) 6p (3) 6s(4) 5d

Ans. (1)

- The number of 2-centre-2-electron and 3-3. centre-2-electron bonds in B₂H₆, respectively, are:
 - (1) 2 and 4
- (2) 2 and 1
- (3) 2 and 2
- (4) 4 and 2

Ans. (4)

The amount of sugar (C₁₂H₂₂O₁₁) required to prepare 2 L of its 0.1 M aqueous solution is: (1) 68.4 g (2) 17.1 g (3) 34.2 g (4)136.8 g

Ans. (1)

Sol. Molarity = $\frac{(n)_{solute}}{V_{solution} (in lit)}$

$$0.1 = \frac{\text{wt.}/342}{2}$$

wt
$$(C_{12}H_{22}O_{11}) = 68.4$$
 gram

- 5. Among the following reactions of hydrogen with halogens, the one that requires a catalyst

 - (1) $H_2 + I_2 \rightarrow 2HI$ (2) $H_2 + F_2 \rightarrow 2HF$
 - (3) $H_2 + Cl_2 \rightarrow 2HCI$ (4) $H_2 + Br_2 \rightarrow 2HBr$

Ans. (1)

- 6. Sodium metal on dissolution in liquid ammonia gives a deep blue solution due to the formation of:
 - (1) sodium ion-ammonia complex
 - (2) sodamide
 - (3) sodium-ammonia complex
 - (4) ammoniated electrons

Ans. (4)

7. What will be the major product in the following mononitation reaction?

$$(1) \begin{array}{|c|c|} \hline O & NO_2 \\ \hline M & & \end{array}$$

$$(3) \qquad \qquad \begin{matrix} O_2N \\ N \\ H \end{matrix}$$

$$(4) \begin{array}{c} O \\ N \\ H \end{array} \begin{array}{c} O \\ O, N \end{array}$$

Ans. (3)

8. In the cell Pt(s)|H₂(g, 1bar|HCl(aq)|Ag(s)|Pt(s) the cell potential is 0.92 when a 10⁻⁶ molal HCl solution is used. THe standard electrode potential of (AgCl/Ag,Cl⁻) electrode is:

$$\left\{ given, \frac{2.303RT}{F} = 0.06Vat298K \right\}$$

(1) 0.20 V (2) 0.76 V (3) 0.40 V (4) 0.94 V **Ans.** (1)

Sol. $Pt(s) \big| H_2(g, 1bar) \big| HCl(aq) \big| AgCl(s) \big| Ag(s) | Pt(s)$ $10^{-6} m$

Anode: $H_2 \longrightarrow 2H^+ + 2e \times 1$ Cathode: $e^- + AgCl(s) \longrightarrow Ag(s) + Cl^-(aq) \times 2$

$$\frac{\times 2}{\text{H}_2(g)l + \text{AgCl}(s)} \longrightarrow 2\text{H}^+ + 2\text{Ag}(s) + 2\text{Cl}^-(aq)$$

$$E_{cell} = E_{cell}^{0} - \frac{0.06}{2} \log_{10} \left((H^{+})^{2} \cdot (Cl^{-})^{2} \right)$$

$$.925 = \left(E_{H_2/H^+}^0 + E_{AgCl/Ag,Cl^-}^0\right) - \frac{0.06}{2}\log_{10} \left((10^{-6})^2 (10^{-6})^2 \right)$$

$$.92 = 0 + E^0_{AgCl/Ag,Cl^-} - 0.03 \log_{10}(10^{-6})^4$$

$$E_{AgCl}^{0}\,/\,Ag,\,Cl^{-}\,=\,.92\,+\,.03\,\times-24\,=\,0.2\,\,V$$

9. The major product of the following recation is:

Ans. (3)

(4) CH₃N

- **10.** The pair that contains two P–H bonds in each of the oxoacids is :
 - (1) H_3PO_2 nad $H_4P_2O_5$
 - (2) $H_4P_2O_5$ and $H_4P_2O_6$
 - (3) H₃PO₃ and H₃PO₂
 - (4) H₄P₂O₅ nad H₃PO₃

Ans. (1)

11. The major product of the following reaction is:

Ans. (4)

- 12. The difference in the number of unpaired electrons of a metal ion in its high-spin and low-spin octahedral complexes is two. The metal ion is:
 - (1) Fe^{2+} (2) Co^{2+}
- $(3) \text{ Mn}^{2+}$ (4)
- (4) Ni^{2+}

Ans. (2)

- 13. A compound of formula A₂B₃ has the hcp lattice. Which atom forms the hcp lattice and what fraction of tetrahedral voids is occupied by the other atoms:
 - (1) hcp lattice-A, $\frac{2}{3}$ Tetrachedral voids-B
 - (2) hcp lattice-B, $\frac{1}{3}$ Tetrachedral voids-A
 - (3) hcp lattice-B, $\frac{2}{3}$ Tetrachedral voids-A
 - (4) hcp lattice-A $\frac{1}{3}$ Tetrachedral voids-B

Ans. (2)

Sol. A₂B₃ has HCP lattice

If A form HCP, then $\frac{3}{4}^{th}$ of THV must occupied by B to form A_2B_3

If B form HCP, then $\frac{1}{3}^{th}$ of THV must occupied by A to form A_2B_3

- **14.** The reaction that is NOT involved in the ozone layer depletion mechanism is the stratosphere is:
 - (1) $HOCl(g) \xrightarrow{h\upsilon} OH(g) + Cl(g)$
 - (2) $CF_2Cl_2(g) \xrightarrow{uv} Cl(g) + CF_2Cl(g)$
 - (3) $CH_4 + 2O_3 \rightarrow 3CH_2 = O + 3H_2OP$
 - (4) $\operatorname{ClO}(g) + \operatorname{O}(g) \rightarrow \operatorname{Cl}(g) + \operatorname{O}_2(g)$

Ans. (3)

- 15. The process with negative entropy change is:
 - (1) Dissolution of iodine in water
 - (2) Synthesis of ammonia from N_2 and H_2
 - (3) Dissolution of $CaSO_4(s)$ to CaO(s) and $SO_3(g)$
 - (4) Subimation of dry ice

Ans. (2)

E

Sol. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$; $\Delta n_g < 0$

16. The major product of the following reaction is:

$$CH_{3}O$$

$$OH$$

$$CH_{3}O$$

$$OH$$

$$(i) dil. HCl/\Delta$$

$$(ii) (COOH)_{2}/$$
Polymerisation

$$(2) \xrightarrow{O \longrightarrow O \longrightarrow C} CH_3$$

$$(3) \qquad OH \qquad O \qquad O \qquad O \qquad O$$

Ans. (3)

- 17. A reaction of cobalt(III) chloride and ethylenediamine in a 1 : 2 mole ratio generates two isomeric products A (violet coloured) B (green coloured). A can show optial actively, B is optically inactive. What type of isomers does A and B represent?
 - (1) Geometrical isomers
 - (2) Ionisation isomers]
 - (3) Coordination isomers
 - (4) Linkage isomers

Ans. (1)

18. The major product obtained in the following reaction is:

$$\begin{array}{c}
CO_2Et \\
\hline
NaOEt/\Delta
\end{array}$$

$$(1) \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c$$

$$(2) \qquad \qquad \bigcup_{\text{CO}_2\text{Et}}^{\text{O}}$$

$$(3)$$
 CO_2Et

Ans. (4)

- 19. Which of the following tests cannot be used for identifying amino acids?
 - (1) Biuret test
- (2) Xanthoproteic test
- (3) Barfoed test
- (4) Ninhydrin test

Ans. (3)

20. What is the IUPAC name of the following compound?

- (1) 3-Bromo-1, 2-dimethylbut-1-ene]
- (2) 4-Bromo-3-methylpent-2-ene
- (3) 2-Bromo-3-methylpent-3-ene
- (4) 3-Bromo-3-methyl-1, 2-dimethylprop-1-ene

Ans. (2)

21. Which is the most suitable reagent for the following transformation?

$$\begin{matrix} \text{OH} \\ \mid \\ \text{CH}_3\text{-CH=CH-CH}_2\text{-CH-CH}_3 & \longrightarrow \end{matrix}$$

CH₃-CH=CH-CH₂CO₂H

- (1) alkaline KMnO₄
- (2) I₂/NaOH
- (3) Tollen's reagent
- (4) CrO₂/CS₂

Ans. (2)

22. The correct match between item 'I' and item 'II' is:

Item 'I'

Item 'II' (reagent)

- (compound)
- (P) 1-naphthol
- (A) Lysine (B) Furfural
- (Q) ninhydrin
- (C) Benzyl alcohol
- (R) KMnO₄
- (D) Styrene
- (S) Ceric ammonium

nitrate

- (1) $(A)\rightarrow(Q)$, $(B)\rightarrow(P)$, $(C)\rightarrow(S)$, $(D)\rightarrow(R)$
- (2) $(A)\rightarrow(Q)$, $(B)\rightarrow(R)$, $(C)\rightarrow(S)$, $(D)\rightarrow(P)$
- (3) $(A)\rightarrow(Q)$, $(B)\rightarrow(P)$, $(C)\rightarrow(R)$, $(D)\rightarrow(S)$
- (4) $(A)\rightarrow(R)$, $(B)\rightarrow(P)$, $(C)\rightarrow(Q)$, $(D)\rightarrow(S)$

Ans. (1)

- 23. In the reaction of oxalate with permaganate in acidic medium, the number of electrons involved in producing one molecule of CO₂ is:
 - (1) 10
- (2) 2
- (3) 1
- (4) 5

Ans. (3)

Sol.
$$2 \stackrel{+7}{M} \text{nO}_4 + 5 \text{C}_2 \text{O}_4^{2-} + 16 \text{H}^+ \longrightarrow 2 \stackrel{+2}{M} \text{n}^{2+}$$

 $+10CO_2 + 8H_2O$

10 e- trans for 10 molecules of CO2 so per molecule of CO₂ transfer of e⁻ is '1'

- 24. 5.1g NH₄SH is introduced in 3.0 L evacuated flask at 327°C. 30% of the solid NH₄SH decomposed to NH₃ and H₂S as gases. The K_p of the reaction at 327° C is (R = 0.082 L atm $mol^{-1}K^{-1}$, Molar mass of S = 32 g $mol^{/01}$, molar mass of $N = 14g \text{ mol}^{-1}$
 - (1) $1 \times 10^{-4} \text{ atm}^2$
- (2) 4.9×10^{-3} atm²
- (3) 0.242 atm²
- (4) 0.242×10^{-4} atm²

Ans. (3)

$$NH_4SH(s) \Longrightarrow NH_3(g) + H_2S(g)$$

Sol.
$$n = \frac{5.1}{51} = .1 \text{ mole } 0$$

$$.1(-1-\alpha)$$

$$\alpha = 30\% = .3$$

so number of moles at equilibrium

$$.1 (1 - .3) .1 \times .3$$
 $.1 \times .3$ $.07 = .03 = .03$

Now use PV = nRT at equilibrium

$$P_{\text{total}} \times 3 \text{ lit} = (.03 + .03) \times .082 \times 600$$

 $P_{total} = .984 \text{ atm}$

At equilibrium

$$P_{NH_3} = P_{H_2S} = \frac{P_{total}}{2} = .492$$

So $k_p = P_{NH_3} \cdot P_{H_2S} = (.492) (.492)$
 $k_p = .242 \text{ atm}^2$

$$k_{-} = .242 \text{ atm}^2$$

- 25. The electrolytes usually used in the electroplating of gold and silver, respectively, are:
 - (1) $[Au(OH)_4]^-$ and $[Ag(OH)_2]^-$
 - (2) $[Au(CN)_2]^-$ and $[Ag CI_2]^-$
 - (3) $[Au(NH_3)_2]^+$ and $[Ag(CN)_2]^-$
 - (4) $[Au(CN)_2]^-$ and $[Ag(CN)_2]^-$

Ans. (4)

- **26.** Elevation in the boiling point for 1 molal solution of glucose is 2 K. The depression in the freezing point of 2 molal solutions of glucose in the same solvent is 2 K. The relation between K_b and K_f is:
- (1) $K_b = 0.5 K_f$ (2) $K_b = 2 K_f$ (3) $K_b = 1.5 K_f$ (4) $K_b = K_f$

Ans. (2)

Sol. Ans.(2)

$$\frac{\Delta T_b}{\Delta T_f} = \frac{i.m \times k_b}{i \times m \times k_f}$$

$$\frac{2}{2} = \frac{1 \times 1 \times k_b}{1 \times 2 \times k_f}$$

$$k_b = 2k_f$$

27. An aromatic compound 'A' having molecular formula C₇H₆O₂ on treating with aqueous ammonia and heating forms compound 'B'. The compound 'B' on reaction with molecular bromine and potassium hydroxide provides compound 'C' having molecular formula C₆H₇N. The structure of 'A' is:

Ans. (3)

E

- 28. The ground state energy of hydrogen atom is -13.6 eV. The energy of second excited state He+ ion in eV is:
 - (1) -6.04 (2) -27.2 (3) -54.4 (4) -3.4

Ans. (1)

Sol.
$$(E)_n^{th} = (E_{GND})_H \cdot \frac{Z^2}{n^2}$$

$$E_{3^{rd}}(He^+) = (-13.6eV) \cdot \frac{2^2}{3^2} = -6.04 eV$$

For an elementary chemical reaction,

$$A_2 \xleftarrow{k_1} 2A$$
, the expression for $\frac{d[A]}{dt}$ is :

- (1) $2k_1[A_2]-k_{-1}[A]^2$
- (2) $k_1[A_2]-k_{-1}[A]^2$
- (3) $2k_1[A_2]-2k_1[A]^2$ (4) $k_1[A_2]+k_1[A]^2$

Ans. (3)

Sol. Ans.(3)

$$A_2 \xrightarrow[K_{-1}]{K_1} 2A$$

$$\frac{d[A]}{dt} = 2k_1[A_2] - 2k_{-1}[A]^2$$

- **30.** Haemoglobin and gold sol are examples of:
 - (1) negatively charged sols
 - (2) positively charged sols]
 - (3) negatively and positively charged sols, respectively
 - (4) positively and negatively charged sols, respectively

Ans. (4)

Sol. Ans.(4)

Haemoglobin → positive sol