JEE Main 30 Jan 2024 (Shift-2) (Memory Based) The Actual Paper will be Updated with Solution After the Official Release # PART: PHYSICS 1. For a given electric circuit shown, find the time taken to change current from highest peak value to half of peak value $V = 220 \sin (100 t)$ (1) $$\frac{\pi}{300}$$ sec (2) $$\frac{\pi}{200}$$ sec (3) $$\frac{\pi}{400}$$ sec (3) $\frac{\pi}{400}$ sec (4) $\frac{\pi}{100}$ sec (1) Ans. Sol. $V = 220 \sin (100 t)$ $$i = \frac{v}{R} \sin{(100t)}$$ $$=\frac{220}{50}$$ sin (100t) $$i = 4.4 \sin(100t)$$ For finding time t₁, taking i = 4.4 A $$4.4 = 4.4 \sin (100t_1)$$ $$sin(100t_1) = 1$$ 100 $$t_1 = \frac{\pi}{2}$$ $$t_1 = \frac{\pi}{200} \sec$$ For Finding time t_2 , taking i = 2.2 A $2.2 = 4.4\sin(100t_2)$ $$\frac{1}{2} = \sin(100 t_2)$$ $$\Rightarrow$$ 100t₂ = $\frac{5\pi}{6}$ $$t_2 = \frac{5\pi}{600}$$ sec Time taken from peak value to half of peak value of current $$\Delta t = t_2 = t_1 = \frac{5\pi}{600} - \frac{\pi}{200} \Rightarrow \frac{5\pi}{600} - \frac{3\pi}{600}$$ $$=\frac{2\pi}{600}=\frac{\pi}{300}$$ Ans Draw true phase diagram for true temperature versus heat supplied when ice at (-10°C) converts into stream at 100°C. Ans. (4) - 3. A simple pendulum of length ℓ = 4 m is taken to height 'R' from earth surface. Calculate the time period of oscillation of simple pendulum at given height. Given : acceleration due to gravity at earth' surface $g = \pi^2$ - (1) 4 sec - (2) 8 sec - (3) 6 sec - (4) 10 sec Ans. (2) Sol. $$T = 2\pi \sqrt{\frac{\ell}{g_{eff}}}$$ where $g_{eff} = g \left[\frac{R}{R+h} \right]^2 = g \left[\frac{R}{R+R} \right]^2 = \frac{g}{4}$ $$T = 2\pi \sqrt{\frac{4}{g/4}} = 2\pi \sqrt{\frac{16}{\pi^2}} = 8 \text{ sec.}$$ - If $m = K.c^xG^2.h^2$ then find x if symbols have general meaning and k is dimensionless (m = mass, 4. c = speed of light, G = universal gravitation constant f h = plank's constant) - (1) 1 - $(2)-\frac{1}{2}$ - $(3)\frac{1}{2}$ - (4) 2 Ans. $[M^{1}] = [L^{x}T^{-x}][L^{3}M^{-1}T^{-2}]^{\frac{-1}{2}}[M^{1}L^{2}T^{-1}]^{\frac{1}{2}}$ Sol. $$\Rightarrow \qquad \left[M^{1}\right] = \left[M^{1}L^{\left(x - \frac{1}{2}\right)}T^{\left(\frac{1}{2} - x\right)}\right]$$ After comparing powers $$x - \frac{1}{2} = 0$$, $\frac{1}{2} - x = 0$ $$x = \frac{1}{2} \quad , \qquad x = \frac{1}{2}$$ In the given circuit find the potential difference 2.5 k Ω . Given : knew voltages for silicon and 5. germanium P-N junction is 0.7 volt and 0.3 Volt respectively - (1) 3.25 V - (2) 4.75 - (3)9.50 - (4) 8.75 V Ans. Vsi = 0.7 V Sol. $$V_{Ge} = 0.3 V$$ $$i = \frac{15 - 0.3 - 0.7}{(2.5 + 1.5) \times 10^3} = \frac{14}{4} \text{ mA} = \frac{7}{2} \text{mA}$$ therefor potential difference across resistor $$V = iR$$ $$= \frac{7}{2} \times 10^3 \times 2.5 \times 10^3$$ $$=\frac{35}{4}\times 1$$ 6. A Charge '-q' and mass 'm' is revolving in circular orbit of radius 'r' around infinite length wire with linear charge density 'λ'. Find the time period of revolution (1) $$(2\pi)^{1/2} r \sqrt{\frac{m\epsilon_0}{\lambda a}}$$ (2) $$(2\pi)^{3/2}\sqrt{\frac{\text{rm}\epsilon_0}{\lambda \alpha}}$$ (3) $$(2\pi)^{3/2} r \sqrt{\frac{m\epsilon_0}{\lambda q}}$$ $$(1) (2\pi)^{1/2} r \sqrt{\frac{m\epsilon_0}{\lambda q}} \qquad (2) (2\pi)^{3/2} \sqrt{\frac{rm\epsilon_0}{\lambda q}} \qquad (3) (2\pi)^{3/2} r \sqrt{\frac{m\epsilon_0}{\lambda q}} \qquad (4) (2\pi)^{1/2} \sqrt{\frac{rm\epsilon_0}{\lambda q}}$$ Ans. **Sol.** $$E = \frac{\lambda}{2\pi r} \in \Omega$$ F = centripetal force required $$|\overrightarrow{F}_{\in}| = \frac{\lambda q}{2\pi r \in_{o}}$$ $\Rightarrow \frac{\lambda q}{2\pi r \in_{o}} = m\omega^{2}r$ $$\Rightarrow \qquad \omega = \sqrt{\frac{\lambda q}{2\pi mr^2}} \in \Omega$$ $$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{\lambda q}{2\pi mr^2 \in_{\Omega}}}} = (2\pi)^{3/2} r \sqrt{\frac{m \in_{\Omega}}{\lambda q}}$$ 7. A 10 N Force is applied on mass 1 kg in upward direction as shown. Find the work done against friction force in taking it up by 10 m along inclined (1) 10 J (2) 5 J (4) 25 J (2)Ans. Sol. $w = (\mu mgcos60^{\circ})10 = 5 J$ 8. Find the value of tension T₁ and T₂ respectively in the given figure? (1) 60N, 72 N (2) 72 N, 60N (3) 40 N, 64N (4) 64N, 40 N Ans. **Sol.** $$M_{Total} = 5 + 3 + 2 = 10 \text{ kg}$$ $$a = \frac{F}{M_{Total}} = \frac{80}{10} = 8m/sec^2$$ $$\Rightarrow$$ T₂ $4 - 2kg$ \rightarrow F = 80N $$80 - T_2 = 2 \times 8$$ $T_2 = 80 - 16 = 64 \text{ N}$ $$\Rightarrow$$ T₁ \longrightarrow T₂ $$T_2 - T_1 = 3 \times 8$$ $T_1 = 64 - 3 \times 8$ $T_1 = 64 - 24 = 40 \text{ N}$ 9. Graph of maximum possible K.E. of photo-electron and frequency of incident photons is as shown in figure. Find slope of graph. - (1) h/e - (2) h - (3) e/h - (4) 1/h (2) Ans. Sol. $k_{max} = h\upsilon - h\upsilon_{th}$ Slope = h. - 10. Match the following: - $\oint \vec{B} \cdot \vec{dA} = 0$ - P. Faraday & Lens's law - B. $\oint \dot{E} \cdot d\dot{A} = \frac{Q_{in}}{\epsilon_o}$ C. $\oint \dot{B} \cdot d\dot{I} = \mu_o i_{enc}$ - Gauss law of on magnetism - C. $\oint \vec{B} \cdot \vec{dl} = \mu_o i_{enc}$ - Ampere's law - D. $\oint \dot{E} \cdot dl = \frac{-d\phi_B}{dt}$ - gauss law of electrostatics - (1) (A Q), (B S), (C R), (D P) - (2) (A S), (B Q), (C R), (D P) - (3) (A Q), (B R), (C S), (D P) - (4) (A Q), (B S), (C P), (D R) Ans. - (A Q), (B S), (C R), (D P)Sol. - For a given planet $R_P = \frac{R_e}{3}$ & $M_P = \frac{M_e}{6}$, Then find the escape velocity for this planet if the escape 11. velocity for earth is 11.2 km/sec. (Re = radius of earth and Me = mass of earth) - (1) 7.92 km/sec - (2) 11. 2 km/sec - (3) 10.3 km/sec - (4) 6.9 km/sec Ans. - $V_{es} = \sqrt{\frac{2GM}{R}}$ Sol. - $\frac{\left(V_{es}\right)_{p}}{\left(V_{es}\right)_{e}} = \sqrt{\frac{M_{P}}{M_{e}}} \times \frac{R_{e}}{R_{P}}$ - $\frac{(V_{es})_p}{11.2} = \sqrt{\frac{3}{6}}$ $(V_{es})_P = 7.92 \text{ km/sec.}$ (1) $$8\sqrt{2} \times 10^{-6} \, \text{T}$$ (2) $$4\sqrt{2} \times 10^{-6}$$ (2) $$4\sqrt{2} \times 10^{-6} \text{ T}$$ (3) $2\sqrt{2} \times 10^{-6} \text{ T}$ (4) $6\sqrt{2} \times 10^{-6} \text{ T}$ (4) $$6\sqrt{2} \times 10^{-6} \text{ T}$$ Ans. **Sol.** B_C = $$4 \times \frac{\mu_0 I}{4\pi d} (\sin 45^\circ + \sin 45^\circ)$$ $$= 20 \times \frac{\mu_0}{4\pi \times \frac{1}{2}} \times \sqrt{2}$$ $$= 4\sqrt{2} \times 10^{-6} \text{ T}$$ 13. A vector which have magnitude same as of $$3\hat{l} + 4\hat{j}$$ & direction along $4\hat{l} + 3\hat{j}$, is $x\hat{l} + 3\hat{j}$ then value x will be? (2)2 (3)4 (4)10 Ans. **Sol.** $$\hat{d} = \frac{4\hat{i}+3\hat{j}}{\sqrt{4^2+3^2}} = \frac{4}{5}\hat{i}+\frac{3}{5}\hat{j}$$ $$|\vec{d}| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$ $$\vec{d} = |\vec{d}| \vec{d}$$ $$\vec{d} = 5 \quad \left(\frac{4}{5}\hat{i} + \frac{3}{5}\hat{j}\right)$$ $$\vec{d} = (4\hat{i} + 3\hat{j})$$ $$(2) r^{1/2}$$ (3) $$r^{3/2}$$ $$(4) r^2$$ Ans. (2) $$=\frac{e}{T}A$$ $$= \frac{\text{ev}}{2\pi r} \pi r^2$$ $$=\frac{\text{evr}}{2}$$ $$= \frac{\text{er}}{2} \left[\frac{\text{nh}}{2\pi \text{rmr}} \right] = \frac{\text{neh}}{4\pi \text{m}}$$.. M ∞ n $$M \propto \sqrt{r}$$ - 15. A disc of moment of inertia 4 kg/m² is spinning freely with ω = 10 rad/s. A second disc of moment of inertia 2 kg/m² and spinning with ω = 4 rad/s in same direction, slides down on the spindle and combined slowly and start spinning together. What is the loss in kinetic energy? - (1) 12 J (2) - (2) 24 J - (3) 36 J - (4) 48 J Ans. Sol. Angular momentum conservation $L_i = L_f$ $I_1\omega_1 + I_2\omega_2 = (I_1 + I_2)\omega$ $4 \times 10 + 2 \times 4 = (4 + 2)\omega$ $40 + 8 = 6 \times \omega$ $$\frac{48}{6} = \omega$$ W = 8 rad/s $$\mathsf{E}_{i} = \frac{1}{2}\mathsf{I}_{1}\omega_{1}^{2} + \frac{1}{2}\mathsf{I}_{2}\omega_{2}^{2}$$ $$= \frac{1}{2} \times 4 \times (10)^2 + \frac{1}{2} \times 2 \times (4)^2$$ $$E_f = -\frac{1}{2}(I_1 + I_2)\omega^2$$ $$E_f = \frac{1}{2}(4+2)8^2$$ $E_f = 3 \times 64$ $$E_f = 192.$$ Loss in K.E. = 216 - 192 = 24 J - 16. Two polarizers are placed at 45° angle. The intensity of final light if unpolarised light of intensity I₀ is incident on one of polarizer. - $(1) \frac{l_0}{2}$ - (2) $\frac{l_0}{8}$ - (3) $\frac{I_0}{4}$ - $(4) \frac{I_0}{16}$ Ans. (3) **Sol.** $$I = \frac{I_0}{2} \cos^2 45^\circ$$ - $=\frac{1_0}{4}$ - 17. 3 moles of monoatomic gas is mixed with 2 moles of diatomic gas. find γ_{mix} - (1) 1.32 - (2) 1.42 - (3) 1.52 - (4) 1.72 Ans. (3) Sol. $$\gamma_{\text{mix}} = \frac{C_{p_{\text{mix}}}}{Cv_{\text{mix}}} = \frac{n_1C_{P_1} + n_2C_{P_2}}{n_1C_{v_1} + n_2C_{v_2}}$$ $$= \frac{3\left(\frac{5}{2}R\right) + 2\left(\frac{7}{2}R\right)}{3 \times \left(\frac{3}{2}R\right) + 2\left(\frac{5}{2}R\right)}$$ $$= \frac{15+14}{9+10}$$ $$=\frac{29}{19}=1.52$$ - 18. A step down transformer has primary voltage of V_p = 3.2 KV, number of turn in primary coil is 3000 with current 5 A. on secondary coil voltage is 320 V with number of turns Ns. If efficiency of transformer is 90% then find the current is secondary coil? - (1) 15 A - (2) 30 A - (3) 45 A - (4) 60 A Ans. (3) **Sol.** Input power = $$3.2 \times 5 \times 10^3$$ = 16 kw eff. = 90% = $$\frac{\text{output power}}{\text{input power}} = \frac{P_{\text{out}}}{16\text{KV}} = \frac{9}{10}$$ $$P_{out} = \frac{9}{10} \times 16 \times 10^3$$ $$V_s I_s = \frac{9}{10} \times 16 \times 10^3$$ $$I_s = \frac{9 \times 16 \times 10^3}{10 \times 320} = 45A$$ | 19. | Heat developed in a wire of resistance R is W. If it is cut into two equal parts and connected into parallel | | | | | | | |------|--------------------------------------------------------------------------------------------------------------|---------|---------|--------|--|--|--| | | with same source battery then heat produced in same time will be. | | | | | | | | | (1) W | (2) 2 W | (3) 3 W | (4) 4W | | | | | Ans. | (4) | | | | | | | Sol. Head W = $$\frac{V^2}{R}$$ t $$\frac{W_2}{W_1} = \frac{R_1}{R_2} = \frac{R}{\left(\frac{R}{4}\right)} = 4$$ $$W_2 = 4W_1 \Rightarrow W_{new} = 4W$$ - 20. Number of spectral line in the spectrum of He^+ , for transition from n = 5 to 1. - (1) 10 - (2)6 - (3)8 - (4)5 - Ans. (1) - **Sol.** Number of spectral lines = ${}^{n}C_{2}$ = ${}^{5}C_{2}$ = 10 - 21. A mass is to be kept on the surface of curve $y = x^2 / 4$ such that it does not slip. Find the maximum height at witch it should be kept if $\mu = 0.5$ - $(1)\frac{1}{2}$ - (2) $\frac{1}{4}$ - (3) 1 - (4) 2 Sol. For no slipping $\mu \text{ mg cos } \theta \geq \text{ mg sin} \theta$ μ≥ tanθ μ≥ dy/dx $0.5 \ge \frac{x}{2}$ 1 ≥ x $$y = \frac{x^2}{4} \Rightarrow x^2 = 4y$$ $x^2 \le 1$ 4y ≤ 1 $y \le \frac{1}{4}$ | 19. | Heat developed in a wire of resistance R is W. If it is cut into two equal parts and connected into parallel | | | | | | | |------|--------------------------------------------------------------------------------------------------------------|---------|---------|--------|--|--|--| | | with same source battery then heat produced in same time will be. | | | | | | | | | (1) W | (2) 2 W | (3) 3 W | (4) 4W | | | | | Ans. | (4) | | | | | | | Sol. Head W = $$\frac{V^2}{R}$$ t $$\frac{W_2}{W_1} = \frac{R_1}{R_2} = \frac{R}{\left(\frac{R}{4}\right)} = 4$$ $$W_2 = 4W_1 \Rightarrow W_{new} = 4W$$ - Number of spectral line in the spectrum of He^+ , for transition from n = 5 to 1. (1) 10 (2) 6 (3) 8 (4) 5 - Ans. (1) Sol. Number of spectral lines = ${}^{n}C_{2}$ = ${}^{5}C_{2}$ = 10 - 21. A mass is to be kept on the surface of curve $y = x^2 / 4$ such that it does not slip. Find the maximum height at witch it should be kept if $\mu = 0.5$ - (1) $\frac{1}{2}$ (2) $\frac{1}{4}$ (3) 1 (4) 2 - Ans. (2) - Sol. For no slipping $\mu \text{ mg cos } \theta \geq \text{ mg sin} \theta$ $\mu \geq \text{ tan} \theta$ $\mu \geq \text{ dy/dx}$ - $0.5 \ge \frac{x}{2}$ $1 \ge x$ $$y = \frac{x^2}{4} \implies x^2 = 4y$$ $x^2 \le 1$ 4y ≤ 1 $y \le \frac{1}{4}$ 22. 1000 drops, each have surface energy E_1 converted into 1 bigger drop of surface energy E_2 then $\frac{E_1}{E_2}$ will be - $(1)\frac{1}{110}$ - (2) $\frac{1}{81}$ - $(3) \frac{1}{100}$ - $(4) \frac{1}{121}$ Ans. (3) Sol. $E = S \times A$ - $E_1 = S \times 4\pi r^2$ - (i) - $E_2 = S \times 4\pi R^2$ - (ii) Vol. conservation $$1000 \times \frac{4}{3} \pi r^3 = \frac{4}{3} \pi R^3$$ $$10^3 \times r^3 = R^3$$ $$\frac{r}{R} = \frac{1}{10}$$ $$\frac{\mathsf{E}_1}{\mathsf{E}_2} = \frac{\mathsf{s} \times 4\pi \mathsf{r}^2}{\mathsf{s} \times 4\pi \mathsf{R}^2} = \left(\frac{\mathsf{r}}{\mathsf{R}}\right)^2$$ $$\frac{E_1}{E_2} = \frac{1}{100}$$ - 23. A 100Ω resistance and $200~\Omega$ resistance is connected in a series with 4v battery. A voltmeter connected across $100~\Omega$ reads 1V. Find internal resistance of voltmeter - (1) 150 - (2)200 - (3)190 - (4)220 Ans. (2) Sol. V = I Rv 1= 5 × 10⁻³ × Rv $$\Rightarrow$$ Rv = $\frac{10^3}{5}$ = 200 Ω - 24. 49 main scale divisions is equal to 50 vernier scale divisions. If one main scale divisions is 0.5 mm then find the value of vernier constant - (1) 0.01 mm - (2) 0.1mm - (3) 0.02 mm - (4) 0.2 mm (1) Ans. vernier constant = L.C = 1MSD - 1VSD Sol. $$= \left[1 - \frac{49}{50}\right] MSD$$ $$=\frac{1}{50}\times0.5\,\text{mm}=0.01\text{mm}$$ - 25. A parent nuclei of mass M is splits into three daughter nuclei of equal mass. Find speed of daughter nuclei if mass defect is Δm : - (1) $\sqrt{\frac{2\Delta M}{M}}$ - (2) $\sqrt{\frac{2\Delta MC}{M}}$ (3) $\sqrt{\frac{3\Delta M}{M}}$ (4) $\frac{2\Delta MC^2}{m}$ Ans. (1) Sol. $V_1 = V_2 = V_3$ from symmetry or momentum conservation Energy released $3\left(\frac{1}{2}\frac{M}{3}V^2\right) = \Delta mC^2$ $$V = \sqrt{\frac{2\Delta m}{M}}.C.$$ 26. v-u graph is given for a concave mirror. Find focal length of concave mirror. - (1) 200 cm - (2) 10 cm - (3) 15 cm - (4) 5 cm Ans. (2) $$\textbf{Sol.} \qquad \frac{1}{V} + \frac{1}{u} = \frac{1}{f}$$ $$\frac{1}{-20} + \frac{1}{-20} = \frac{1}{f}$$ $$F = 10 cm$$ ## JEE Main 30 Jan 2024 (Shift-2) (Memory Based) # PART: CHEMISTRY - 1. Geometry of Decacarbonyl dimanganese (0) is : - (1) Octahedral (2) Square planar (3) Trigonal bipyramidal (4) Square pyramidal Ans. (1) Sol. [Mn₂(CO)₁₀] 2. Which of the following species has square pyramidal geometry? (1) PCI₅ (2) BrF₅ (3) PF₅ (4) [Ni(CN)₄]²- Ans. (2) Sol. sp³d (trigonal bipyramidal (5 BP + 0 LP)) (1) PCI₅ (2) BrF₅ sp³d² (square pyramidal (5 BP + 1 LP)) sp3d (trigonal bipyramidal (5 BP + 0 LP)) (3) PF₅ (4) [Ni(CN)₄]²⁻ dsp² (square planar) Statement-1: H₂Te is more acidic than H₂S. 3. Statement-2: H₂Te has less bond strength than H₂S. Statement-1 and Statement-2 are correct. (2) Statement-1 and Statement-2 are incorrect. (3) Statement-1 is correct and Statement-2 is incorrect. (4) Statement-1 is incorrect and Statement-2 is correct. Ans. (1) Sol. In H₂Te bond length increases and bond energy decreases therefore acid strength increases. 4. Among the following correct statement is: (1) Stability of hydrides order: NH₃ < PH₃ < AsH₃ < SbH₃ < BiH₃ (2) Reducing strength order: NH₃ < PH₃ < AsH₃ < SbH₃ < BiH₃ (3) NH₃ is strongest reducing agent while BiH₃ is mild reducing agent (4) Basicity of hydrides: NH₃ < PH₃ < AsH₃ < SbH₃ < BiH₃ (2) Ans. Sol. Due to increase in bond length down the group reducing strength increases. 5. Given standard electrode potential of BrO₄-, IO₄- and CIO₄- are 1.85 V, 1.65 V and 1.20 V respectively then select order of their oxidizing power: Ans. (3) - Sol. More reduction potential, more is the oxidizing strength. - 6. Statement-1: Since fluorine is more electronegative than nitrogen, the resultant dipole moment of NH₃ is greater than that of NF₃. Statement-2: In case of NH₃ the orbital dipole due to lone pair is in the same direction as the resultant dipole moment of N-H bonds, whereas in NF₃ the orbital dipole is in the direction opposite to the resultant dipole moment of three N-F bonds. - Statement I and Statement II are correct. - (2) Statement I is correct and Statement II is incorrect - (3) Statement I is incorrect and Statement II is correct - (4) Statement I and Statement II are incorrect Ans. (1) The orbital dipole because of lone pair decreases the effect of the resultant N – F bond moments, Sol. which results in the low dipole moment of NF3 as represented below: Resultant dipole moment in NH₃ = 4.90×10^{-30} C m in NF₃ = 0.80×10^{-30} C m Resultant dipole moment 7. In a mixture of B & C, A is added. Given moles of A, B & C are respectively nA, nB & nc then determine mole fraction of C. (1) $$\frac{n_C}{n_A + n_B + n_C}$$ (2) $\frac{n_C}{n_A \cdot n_B + n_C}$ (3) $\frac{n_C}{n_A \cdot n_C + n_B}$ (4) $\frac{n_C}{n_A + n_B}$ $$(2) \frac{n_C}{n_A.n_B + n_C}$$ (3) $$\frac{n_{c}}{n_{c} + n_{c} + n_{c}}$$ $$(4) \frac{n_C}{n_A + n_B}$$ Ans. **Sol.** Mole fraction = $$\frac{\text{moles of substance}}{\text{total no. of moles}}$$ - 8. The colour of KMnO₄ and K₂Cr₂O₇ is due to - (1) d-d transition - (2) Metal to ligand charge transfer - (3) Ligand to metal charge transfer - (4) F-Center Ans. (3) Sol. KMnO₄ K₂Cr₂O₇ (Purple) (Orange Red) Colour of KMnO₄ & K₂Cr₂O₇ is due to ligand to metal charge transfer phenomenon. 9. $$MnO_2 + KOH + O_2 \xrightarrow{\Delta} [X]$$ $$[X] \xrightarrow{\text{Electrolyt ic}} [Y]$$ Select correct option MnO₄- MnO_4^{-2} (3) Mn₂O₃ Mn [Y] (4) Mn₂O₇ MnO_4 Ans. (2) Sol. $$2 \text{ MnO}_2 + 4 \text{KOH} + \text{O}_2 \longrightarrow 2 \text{K}_2 \text{MnO}_4 + 2 \text{H}_2 \text{O}$$ $$MnO_4^{-2} \xrightarrow{Electrolyt \, ic} MnO_4^{-}$$ Oxidation [X] [Y] 10. $$CrO_2Cl_2 + NaOH \longrightarrow [X]$$ $$[X] + HCI + H_2O_2 \longrightarrow [Y]$$ Select correct option [Y] - (1) Na₂CrO₄ - CrO₅ - (2) Na₂Cr₂O₇ Cr₂O₃ - (3) CrO₅ - Na₂CrO₄ - (4) Cr₂O₃ Na₂Cr₂O₇ Ans. (1) **Sol.** $$CrO_2Cl_2 + NaOH \longrightarrow Na_2CrO_4 + NaCl + H_2O$$ $$CrO_4^{-2} \xrightarrow{H^-} Cr_2O_7^{-2} \xrightarrow{H^- \& H_2O_2} CrO_5$$ | | (1) 180 g of glucose in water(3) 180 g of Acetic acid in Benzene | | | (2) 180 g of Benzoic acid in Benzene | | | | | |------|---------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|--------------------------------------|----------------------------------------------------------------|--|--|--| | | | | | (4) 180 g of A | Acetic acid in water | | | | | Sol. | $\Delta T_f = i K_f m$ | ÷ | $\Delta T_f \propto im$ | | | | | | | | | | $\Delta T_f \propto in$ | | | | | | | | | | $\Delta T_f \propto i \frac{W}{M}$ | | | | | | | | For Glucose i = 1 in Water | | | | | | | | | | Benzoic acid i < 1 in Benzene | | | | | | | | | | Acetic acid i < 1 in Benzene | | | | | | | | | | Acetic acid i > 1 in Water | | | | | | | | | | More the number of mole of solute greater is depression in freezing point. | | | | | | | | | 12. | Among the following how many are optical active | | | | | | | | | | (i) cis [Co(en) | ₂ Cl ₂] | (ii) trans [Co(e | n)2Cl2] | (iii) cis [Pt(en) ₂ Cl ₂] ⁺² | | | | | | (iv) trans [Pt(e | en) ₂ Cl ₂]+2 | (v) [Pt(en) ₃]+4 | | (vi) [Pt(en)Cl ₄] | | | | | Ans. | (3) | | | | | | | | | Sol. | Complex | | Optica | al Nature | | | | | | | (i) cis [Co(en) | ₂ Cl ₂] | Optica | al active | | | | | | | (ii) trans [Co(e | en) ₂ Cl ₂] | Optica | al inactive | | | | | | | (iii) cis [Pt(en) |) ₂ Cl ₂] ⁺² | Optica | al active | | | | | | | (iv) trans [Pt(e | en) ₂ Cl ₂]+2 | Optica | al inactive | | | | | | | (v) $[Pt(en)_3]^{+4}$ | | Optica | al active | | | | | | | (vi) [Pt(en)Cl ₄ |] | Optica | al inactive | | | | | | 13. | In He+ ion an electron Jumps from 5th excited state to 1st excited state, then total number of spectral | | | | | | | | | | lines formed a | are | | | | | | | | Ans. | (10) | | | | | | | | | Sol. | 5 th excited state = n ₂ = 6 | | | | | | | | | | 1st excited state = n ₁ = 2 | | | | | | | | | | total spectral line | | | | | | | | | | upto 5 th state = 1 | | | | | | | | | | 4 th state = 2 | | | | | | | | | | 3 th state = 3 | | | | | | | | | | 2 nd state = 4 | | | | | | | | | | total line = 10 | | | | | | | | | | | | | | | | | | | | | | | | | | | | Which of the following solution have maximum depression in freezing point? 11. #### 14. Using following reaction (i) 2 Fe_(s) + $$\frac{3}{2}$$ O₂(g) \longrightarrow Fe₂O_{3(s)} ΔH^{o}_{rxn} = $-$ 822 KJ\mole. (ii) $$C_{(s)} + \frac{1}{2} O_{2(g)} \longrightarrow CO_{(g)}$$ $\Delta H^{o}_{rxn} = -110 \text{ KJ/Mole.}$ The value of ΔH^o_{rxn} for reaction Fe₂O_{3(s)} + 3C_(s) \longrightarrow 2Fe_(s) + 3CO is _____ KJ [Nearest integer] #### Ans. (492) $$\Delta H_{rxn} = 3 \times [-110] - [-822] = -330 + 822 = 492 \text{ KJ}$$ 15. How many of following species can show redox disproportion reaction. Ans. (6) Sol. To show disproportion reaction element must show at least 3 oxidation state and element must present in intermediate oxidation state. $$H_2 \overset{-1}{O_2}$$, $\overset{0}{P_4}$, $\overset{+3}{NO_2}$, $\overset{+1}{Cu}$, $\overset{+5}{ClO_3}$, $\overset{0}{Cl_2}$ can show disproportion reaction. 16. How many of the following can show flame colour test? Ans. (4) Sol. Be & Mg do not show flame colour test. In buffer solution of benzoic acid and sodium benzoate pH of solution is 4.5. then ratio of moles of salt to moles of acid is _____ [Nearest Integer] [Give pKa (Benzoic acid) = 4.5 and log2 = 0.3] ## Ans. (2) Sol. Benzoic acid + sodium benzoate. Acidic Buffer solution $$pH = pKa + log \frac{[Salt]}{[Acid]}$$ $$4.5 = 4.2 + \log \frac{\text{[Salt]}}{\text{[Acid]}}$$ $$0.3 = \log \frac{[Salt]}{[Acid]}$$ $$\frac{\text{[Salt]}}{\text{[Acid]}} = 2 \qquad \Rightarrow \frac{n_{\text{salt}}}{n_{\text{acid}}} = 2$$ # 18. IUPAC name of CH₃-CH-CH₂-CN is: (1) 3-Aminobutanenitrile (2) 3-Aminobutanecarbonitrile (3) 2-Amino-1-cyanopropane (4) 3-Aminebutanenitrile Ans. (1) - 19. Which reagent on reaction with phenol give salicyldehyde : - (1) CO₂, NaOH (2) CHCl3, NaOH (3) CCl₄, NaOH (4) H₂O, H⁺ Ans. (2) Sol. This reaction is known as Reimer-Tieman reaction. - 20. The correct order of stability for given carbocations is : - (I) (CH₃)₃C⁺, (II) (CH₃)₂CH⁺, (III) CH₃CH₂⁺, (IV) CH₃⁺ - (1) || > | > || > |V (3) IV > III > II > I (4) | > | > | V > | | Ans. (2) **Sol.** Greater the number of α -hydrogen, greater the hyperconjugation and stability of carbocation. 21. (A) $$\leftarrow \frac{BH_3/THF}{H_2O_2/OH^2}$$ \longrightarrow (B) ? A & B are respectively $$(1)$$ (A) OH (B) OH $$(3) \bigcup_{(A)}^{OH} \bigcup_{(B)}^{OH}$$ Ans. (1) Sol. $$(A) OH \overset{BH_3/THF}{\longleftarrow} (B) (B) OH$$ (anti-Marconikov addition of water) (Marconikov addition of water) 22. $$\bigcirc \frac{(1) \operatorname{conc.} H_2 \operatorname{SO}_4 + \operatorname{conc.} \operatorname{HNO}_3}{(2) \operatorname{Sn/HCl}} \wedge A \xrightarrow{(1) \operatorname{NaNO}_2 + \operatorname{HCl}} \wedge B$$ What is A and B $$\overset{\mathsf{NH}_2}{\mathsf{NH}_2}$$ (1) $$A = \bigcirc$$; $B = HO \longrightarrow \bigcirc$ $N=N \longrightarrow$ (2) $$A = \bigcirc$$; $B = HO \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ (3) $$A = \bigcirc P = O$$; $B = O$ OH (4) $$A = \bigcirc NH_2$$; $B = \bigcirc N=N$ Ans. (1) Sol. \bigcirc (1) conc. H₂SO₄ + conc. HNO₃ \bigcirc NO₂ \bigcirc NO₂ \bigcirc NO₂ \bigcirc NO₂ \bigcirc NH₂ \bigcirc NH₂ \bigcirc NaNO₂+HCl \bigcirc (A) \bigcirc N=N \bigcirc OH (B) A & B are respectively (1) $$A = \bigcirc_{CI}$$; $B = \bigcirc_{CI}$ (2) $A = \bigcirc_{CI}$; $B = \bigcirc_{CH_2-OH}$ (3) $A = \bigcirc_{CH_2-OH}$; $B = \bigcirc_{CH_2-OH}$ (2) $$A = \bigcirc_{OH}$$; $B = \bigcirc_{CI}$ (4) $A = \bigcirc_{OH}$; $B = \bigcirc_{CI}$ Ans. (1) Sol. $$CHO$$ CHO $CH2-OH$ $CH2-OH$ CI $CH2-OH$ CI This is a cannizaro reaction. - 24. Total number of optical isomer formed is Chlorobutane + Cl₂ → dichlorobutane - Ans. (7) 25. Total number of geometrical isomer possible for given compound is ? Ans. (4) ## JEE Main 30 Jan 2024 (Shift-2) (Memory Based) # PART: MATHEMATICS 1. Let S_K denotes sum of first k terms of sequence 3, 7, 11, 15, Value of n, if $$40 < \frac{6}{n(n+1)} \sum_{k=1}^{n} S_k < 42$$, is _____ Ans. (9) **Sol.** $$S_K = 3 + 7 + 11 + \dots$$ up to k terms $$= \frac{k}{2} [6 + (k-1)4] = k(2k+1)$$ $$\sum_{k=1}^{n} (2k^2 + k) = \frac{2n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$$ $$n = 9$$ 2. Let $$f(x) = \frac{x}{(1+x^4)^{\frac{1}{4}}}$$ & $g(x) = f(f(f(f(x))))$ then $\int_{0}^{\sqrt{2\sqrt{5}}} x^2 g(x) dx$ is $$(1) \frac{13}{6}$$ $$(2) \frac{6}{13}$$ $$(3)\frac{2}{5}$$ $$(4)\frac{7}{2}$$ Ans. (1) Sol. $$\frac{\frac{x}{(1+x^4)^{\frac{1}{4}}}}{\left(1+\frac{x^4}{1+x^4}\right)^{\frac{1}{4}}} = \frac{x}{(1+2x^4)^{\frac{1}{4}}}$$ So $$f(f(f(f(x)))) = \frac{x}{(1+4x^4)^{\frac{1}{4}}} = g(x)$$ $$\int_{0}^{\sqrt{2\sqrt{5}}} x^{2} g(x) dx = \int_{0}^{\sqrt{2\sqrt{5}}} \frac{x^{3}}{\left(1 + 4x^{4}\right)^{\frac{1}{4}}} dx$$ $$\int_{1}^{3} \frac{\frac{1}{4}t^{3}dt}{t} = \frac{1}{4} \int_{1}^{3} t^{2}dt = \frac{1}{12} (27 - 1) = \frac{26}{12} = \frac{13}{6}$$ $$1 + 4x^4 = t^4$$ $$16x^{3}dx = 4t^{3}dt$$ $$x^3dx = \frac{1}{4}t^3dt$$ 3. $$\overline{a}.\overline{b} = 3\sqrt{2} \cdot \left|\overline{b}\right|^2 = 6$$ such that $\overline{a} = \hat{i} + \alpha \hat{j} + \beta \hat{k}$. If angle between $\overline{a} \cdot \left|\overline{a}\right| = \frac{\pi}{4}$ then value of $(\alpha^2 + \beta^2) \left|\overline{a} \times \overline{b}\right|^2$ is _____. Ans. (90) **Sol.** $$\bar{a}.\bar{b} = 3\sqrt{2}$$ $$|\overline{a}| |\overline{b}| \cos \frac{\pi}{4} = 3\sqrt{2}$$ $$|\overline{a}|\sqrt{6}.\frac{1}{\sqrt{2}}=3\sqrt{2}$$ $$|\overline{a}| = \sqrt{6} = \sqrt{1 + \alpha^2 + \beta^2}$$ $$\alpha^2 + \beta^2 = 5$$ $$|\overline{a} \times \overline{b}|^2 = |\overline{a}|^2 |\overline{b}|^2 \sin^2 \frac{\pi}{4} = 6 \times 6 \times \frac{1}{2} = 18$$ So $$\left(\alpha^2 + \beta^2\right) \overline{a} \times \overline{b}^2 = 5 \times 18 = 90$$ 4. $$R = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$, $x \sin\theta = y \sin\left(0 + \frac{2\pi}{3}\right) = z \sin\left(0 + \frac{4\pi}{3}\right) \neq 0$ Statement -1: Trace (R) = 0 Statement -2: Trace (adj(adj (R)) = 0 - (1) Statement -1 is true and statement 2 is false (2) Statement -1 is false and statement 2 is false - (3) Statement −1 is false and statement − 2 is true (4) Statement −1 is true and statement − 2 is true Ans. (2) Sol. $$y = \frac{x \sin \theta}{\sin \left(\theta + \frac{2\pi}{3}\right)}, z = \frac{x \sin \theta}{\sin \left(\theta + \frac{4\pi}{3}\right)}$$ $$x + y + z = \frac{-3x}{4 \sin \left(\theta + \frac{2\pi}{3}\right) \sin \left(\theta + \frac{4\pi}{3}\right)} \neq 0$$ ⇒ Statement-1 is wrong $$R = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}, \text{ adj } R = \begin{bmatrix} yz & 0 & 0 \\ 0 & xz & 0 \\ 0 & 0 & xy \end{bmatrix}$$ $$adj(adj,R) = \begin{bmatrix} x^2yz & 0 & 0 \\ 0 & y^2xz & 0 \\ 0 & 0 & z^2xy \end{bmatrix} \Rightarrow Tr(adj(adjR) = xyz(x + y + z) \neq 0$$ 5. If $$|\dot{a} \times \dot{b}| = 2$$, and $|\dot{a}| = 1$, then $|(\dot{a} \times \dot{b}) - \dot{a}|^2$ is Ans. (5 **Sol.** $$|\vec{a} \times \vec{b}| = 2$$ and $|\vec{a}| = 1 = |(\vec{a} \times \vec{b}) - \vec{a}|^2 = |\vec{a} \times \vec{b}|^2 + |\vec{a}|^2 - 2\vec{a} \cdot (\vec{a} \times \vec{b}) = (2)^2 + 1 - 0 = 5$ 6. If 11th term of G.P., whose 1st term is 'a' and 3rd term is 'b', is equal to pth term of G.P. whose first term is 'a' and 5th term is 'b', then value of p is Ans. (21) **Sol.** $$(T_1 = a, T_3 = ar_1^2 = b \Rightarrow r_1^2 = b/a)$$ and $(T_1 = a, T_5 = ar_2^4 = b + 11^{th}$ term of first GP = pth term of second G.P. $a(r_1)^{10} = a(r_2)^{p-1}$ $$\left(\left(\frac{b}{a}\right)^{1/2}\right)^{10} = \left(\left(\frac{b}{a}\right)^{1/4}\right)^{p-1} \implies 5 = \frac{p-1}{4} \implies p = 21$$ 7. Let $$f(x) = \begin{cases} x^2 + 3x + a ; & x \le 1 \\ bx + 2 ; & x > 1 \end{cases}$$ is differentiable everywhere. The value of $\int_2^2 f(x) dx$ is $$(1)\frac{37}{2}$$ (2) $$\frac{36}{2}$$ (3) $$\frac{37}{4}$$ $$(4) \frac{36}{4}$$ Ans. (1) **Sol.** $$f(x)$$ is continuous at $x = 1$ $$f(1^-) = f(1) = f(1^{+1})$$ $$a + 4 = b + 2 \Rightarrow b = a + 2$$ $$f(x)$$ is differential at $x = 1$ $$f'(1^-) = f'(1^+)$$ $$5 = b \Rightarrow a = 3$$ Now $$\int_{2}^{2} f(x)dx = \int_{2}^{1} (x^{2} + 3x + 3)dx + \int_{1}^{2} (5x + 2)dx$$ $$= \left(\frac{x^{3}}{3} + \frac{3x^{2}}{2} + 3x\right)_{-2}^{1} + \left(\frac{5x^{2}}{2} + 2x\right)_{1}^{2} = \left(\frac{1}{3}(1+8) + \frac{3}{2}(1-4) + 9\right) + \frac{5}{2}(4-1) + 2$$ $$= 3 - \frac{9}{2} + 9 + \frac{15}{2} + 2 = 14 + \frac{9}{2} = \frac{37}{2}$$ Bag A contains 3 white & 7 red balls and bag B contains 2 white & 3 Red balls. If a ball is picked up randomly then what is the probability that the ball picked is white from bag A $$(1) \frac{3}{20}$$ $$(2)\frac{2}{20}$$ $$(3) \frac{3}{10}$$ $$(4) \frac{4}{20}$$ Ans. (1) A is event that bag A is selected B is event that red bag B is selected W is event that white ball is drawn $$P(A) = P(B) = \frac{1}{2}$$ $$P(A \cap W) = P(A)P\left(\frac{W}{a}\right) \left(\frac{W}{a}\right) = \frac{1}{2} \cdot \frac{3}{10} = \frac{3}{20}$$ 9. $$f(x)$$ is double differentiable function. Tangent at (1, $f(1)$) and (3,($f(3)$) cuts positive x-axis at an angle $\frac{\pi}{6}$ and $$\frac{\pi}{4}$$ then value of $\int_{1}^{3} ((f'(x))^2 + 1) f''(x) dx$ is: $$(1) \frac{4}{3} - \frac{10}{0\sqrt{3}}$$ $$(1) \frac{4}{3} - \frac{10}{9\sqrt{3}}$$ $(2) \frac{3}{4} - \frac{10}{9\sqrt{3}}$ $(3) \frac{4}{3} - \frac{10}{\sqrt{3}}$ $(4) \frac{4}{3} - \frac{1}{9\sqrt{3}}$ $$(3) \frac{4}{3} - \frac{10}{\sqrt{3}}$$ $$(4) \frac{4}{3} - \frac{1}{9\sqrt{3}}$$ Ans. **Sol.** $$f'(1) = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}, f'(3) = 1$$ $$I = \int_{1}^{3} ((f'(x))^{2} + 1)f''(x)dx$$ Let $$f(x) = t$$ $$f''(x) dx = dt$$ $$I = \int_{\frac{1}{\sqrt{3}}}^{1} (t^2 + 1) dt = \left(\frac{t^3}{3} + t\right)_{\frac{1}{\sqrt{3}}}^{1} = \frac{4}{3} - \frac{10}{9\sqrt{3}}$$ 10. Area bounded by $$(y-2)^2 = x - 1$$, $x - 2y + 4 = 0$ and positive coordinate axes, is Ans. **Sol.** Solving $$y - 2 = \frac{x}{2}$$ and $(y-2)^2 = x - 1$ $$x^2 = 4x - 4$$ $$(x-2)^2 = 0$$ $$x = 2$$ $$y = 3$$ Area = $$\int_{0}^{3} (x_{P} - x_{L}) dy$$ $$= \int_{0}^{3} ((y-2)^{2} + 1 - 2y + 4) dy = \int_{0}^{3} (y^{2} - 6y + 9) dy = \int_{0}^{3} (y - 3)^{2} dy$$ $$\left(\frac{(y-3)^3}{3}\right)_0^3 = 0 + \frac{27}{3} = 9$$ required area = $$9 - \frac{1}{2} \times 4 \times 2 = 5$$ 11. Let $$f(x) = ae^{2x} + be^{x} + cx$$, where $f(0) = -1$, $f'(\log_e 2) = 21$ and $\int_0^{\log_e 4} (f(x) - cx) dx = \frac{39}{2}$ then the value of Ans. (8) **Sol.** $$f(0) = a + b = -1$$ ____(1) $$f'(x) = 2ae^{2x} + be^{x} + c$$ $$f'(log_e^2) = 8a + 2b + c = 21$$ ____(2) $$\int_{0}^{\log_{e}^{4}} (f(x) - cx) dx = \int_{0}^{\log_{e}^{4}} (ae^{2x} + be^{x}) dx$$ $$=\frac{a}{2}(16-1)+b(4-1)$$ $$= \frac{15a}{2} + 3b = \frac{39}{2}$$ (3) $$\Rightarrow \frac{9a}{2} + 3(a+b) = \frac{39}{2} \Rightarrow \frac{9a}{2} = \frac{45}{2} \Rightarrow a = 5$$ From (2) $$b = -6$$ also $c = -7$ $$|a + b + c| = |5 - 6 - 7| = 8$$ 12. If $$f(x) = (x - 2)^2 (x - 3)^3$$ for $x \in [1, 4]$. If M and m denote maximum and minimum values respectively then M-m is Ans. (12 Sol. $$f(x) = 2 (x-2) (x-3)^3 + 3(x-2)^2 (x-3)^2$$ = $(x-2) (x-3)^2 (2x-6+3x-6)$ $$= (5x-12)(x-2)(x-3)^2$$ Min max min max Local max at x = 2 and x = 4 Local min at $x = \frac{12}{5}$ and x = 1 $$f(1) = 1 \times (-8) = -8$$ $$f(2) = 0$$ $$f\left(\frac{12}{5}\right) = \frac{-12}{125}$$ $$f(4) = 4 \times 1 = 4$$ $$M = 4$$ $$m = -8$$ $$M - m = 4 - (-8) = 12$$ 7 6 (4)340 Ans. (2) $$4 \rightarrow {}^8C_7 \times {}^6C_4 \times {}^4C_4$$ $$4 \rightarrow {}^8C_6 \times {}^6C_5 \times {}^4C_4$$ 4 C $$4 \rightarrow {}^8C_5 \times {}^6C_6 \times {}^4C_4$$ An adding all cases we get $$({}^{8}\text{C}_{7} \times {}^{6}\text{C}_{4} \times {}^{4}\text{C}_{4}) + ({}^{8}\text{C}_{6} \times {}^{6}\text{C}_{5} \times {}^{4}\text{C}_{4}) + ({}^{8}\text{C}_{5} \times {}^{6}\text{C}_{6} \times {}^{4}\text{C}_{4})$$ $$= \left(8 \times \frac{6 \times 5}{2} \times 1\right) + \left(\frac{8 \times 7}{2} \times 6 \times 1\right) + \left(\frac{8 \times 7 \times 6}{3 \times 2}\right)$$ ### 14. Consider the system of equations $$x + y + z = 5$$ $$x + 2y + \lambda^2 z = 9$$ $$x + 3y + \lambda z = \mu$$ - (1) system has unique solution for λ = 1, $\mu \neq$ 13 - (2) system has infinite solution for $\lambda = 1$, $\mu = 13$ - (3) system is inconsistent for $\lambda = 1$, $\mu \in R$ - (4) system has infinite solution for $\lambda = 1$, $\mu \neq 13$ #### Ans. (2) **Sol.** $$x + y + z = 5$$ $$x + 2y + \lambda^2 z = 9$$ $$x + 3y + \lambda z = \mu$$ from $$(1) + (3) - 2(2)$$ $$z(\lambda + 1 - 2\lambda^2) = (\mu - 13)$$ for infinite solution $\lambda = -1/2$, 1 and $\mu = 13$ # 15. Let $\alpha, \beta \in \left(0, \frac{\pi}{2}\right)$, $3\sin(\alpha + \beta) = 2\sin(\alpha - \beta)$ and $\tan \alpha = k \tan \beta$ then the value of k is $$(1) - 5$$ $$(4) - 3$$ Ans. (1) **Sol.** $$3\sin(\alpha+\beta) = 2\sin(\alpha-\beta)$$ $$\frac{\sin(\alpha+\beta)}{\sin(\alpha+\beta)} = \frac{2}{3}$$ $$\frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{\sin(\alpha+\beta)-\sin(\alpha-\beta)} = \frac{5}{-1}$$ $$\frac{2\sin\alpha\cos\beta}{2\cos\alpha\sin\beta} = \frac{5}{-1}$$ $$\frac{\tan \alpha}{\tan \beta} = -5$$ $$k = -5$$ **16.** $$L_1 = \hat{i} - \hat{j} + 2\hat{k} + \lambda(\hat{i} - \hat{j} + 2\hat{k}) \quad \lambda \in \mathbb{R}$$ $$L_2 = \hat{j} - \hat{k} + \mu(3\hat{i} + \hat{j} + p\hat{k})$$ $$L_3 = s(\hat{l} + m\hat{j} + n\hat{k})$$ L₁ is perpendicular to L₂ L₃ is perpendicular to L₁ & L₂ then (/, m, n) can be $$(1)(-1, 7, 4)$$ $$(2)(4, -1, 7)$$ $$(3) (7, 4, -1)$$ $$(4)(7, -1, 4)$$ Ans. (1) Sol. Since L₁ is perpendicular to L₂ $$\Rightarrow (\hat{i} - \hat{j} + 2\hat{k}).(3\hat{i} + \hat{j} + p\hat{k}) = 0$$ $$3 - 1 + 2p = 0 \Rightarrow p = -1$$ $L_3 \perp L_1 \And L_2$ \Rightarrow L₃ is parallel to $(\hat{i} - \hat{j} + 2\hat{k}) \times (3\hat{i} + \hat{j} + p\hat{k})$ $$(\hat{i} - \hat{j} + 2\hat{k}) \times (3\hat{i} + \hat{j} + p\hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & -1 \end{vmatrix} = -\hat{i} + 7\hat{j} + 4\hat{k}$$ $$\ell = -1$$, m = 7, n = 4 17. If A = {1, 2,3,4} then find number of symmetric relation on A which is not reflexive is Ans. (960) **Sol.** If set A has n elements then number of symmetric relation = $$2^{\frac{n^2+n}{2}} = 2^{10} (:: n = 4)$$ number of reflexive and symmetric relation = $2^{\frac{n^2-n}{2}} = 2^6$ (: n = 4) number of relation which is symmetric but not reflexive = $2^{10} - 2^6 = 960$ 18. Find number of common roots of the equations $Z^{1901} + Z^{100} + 1 = 0$ and $Z^3 + 2Z^2 + 2Z + 1 = 0$ Ans. (1) **Sol.** $$Z^3 + 2Z^2 + 2Z + 1 = 0$$ $$(Z+1)(Z^2-Z+1)+2Z(Z+1)=0$$ $$(Z+1)(Z^2+Z+1)=0$$ $$\Rightarrow$$ Z = -1, Z = ω , ω^2 $$Z=-1$$ does not satisfy $Z^{1901} + Z^{100} + 1 = 0$ If $$Z = \omega \Rightarrow Z^{1901} + Z^{100} + 1 = \omega^{1901} + \omega^{100} + 1$$ = $$\omega^{1899}$$. ω^2 + ω^{99} × ω + 1 $$= \omega^2 + \omega + 1 = 0$$ If $$Z = \omega^2 \Rightarrow Z^{1901} + Z^{100} + 1 = \omega^{2(1901)} + \omega^{100} + 1$$ = $\omega + \omega^2 + 1 = 0$ Number common roots = 2 19. Find number of real solutions of the equation $x(x^2 + |x| + 5 |x-1| - 6 |x-2|) = 0$ (2) (1) 2 (2) 3 (3) 4 (4) 6 Ans. Sol. Case-I:If x ≥ 2 $$x(x^2+x+5x-5-6x+12)=0$$ $$x(x^2 + 7) = 0 \Rightarrow x = 0$$ (Rejected) Case –II: if $1 \le x < 2$ $$x(x^2+x+5x-5+6x-12) = 0$$ $$x(x^2+12x-17) = 0 \Rightarrow$$ one solution in [1,2) Case-III: If 0 ≤ x < 1 $$x(x^2+x-5x+5+6x-12)=0$$ $$x(x^2+2x-7) = 0 \Rightarrow x = 0$$ is only solution in [0,1) Case -IV: If x < 0 $$x(x^2-x-5x+5+6x-12)=0$$ $$x(x^2-7) = 0 \Rightarrow x = 0, \sqrt{7}, -\sqrt{7}$$ $$x = -\sqrt{7}$$ is only the solution So number of required solution is 3 (1) $$x f'(x) - 2024 f(x) = 0$$ (2) $$2024 f'(x) = f(x)$$ (3) $$f'(x) - 2024 f(x) = 0$$ (4) None of these Ans. (1) Sol. Put $$x = y = 1$$ $$f(1) = 1$$ Now put x = 1 $$\Rightarrow$$ f $\left(\frac{1}{y}\right) = \frac{1}{f(y)}$ $$f(y) = \pm y^n$$ but $$f(1) = 1 \Rightarrow f(y) = y^n$$ $$f'(y) = ny^{n-1}$$ $\Rightarrow f'(1) = n = 2024$ $$f(x) = x^{2024}$$ $$f'(x) = 2024 x^{2023}$$ $$xf'(x) = 2024 f(x) \Rightarrow xf'(x) - 2024f(x) = 0$$ 21. $$\sum_{r=0}^{n} \frac{{}^{n}C_{r}.{}^{n}C_{r}}{r+1} = \alpha, \sum_{r=0}^{n} \frac{{}^{n}C_{r}.{}^{n+1}C_{r}}{r+1} = \beta \text{ . If } 4\beta = 7\alpha \text{ then n is}$$ Ans. (6) **Sol.** $$\alpha = \frac{1}{n+1} \sum_{r=0}^{n} {n+1 \choose r+1} {n \choose r}$$ $$\alpha = \frac{1}{n+1} \left(2^{n+1} C_n \right)$$ $$\beta = \frac{1}{n+1} \sum_{r=0}^{n} {}^{n+1}C_{r+1} {}^{n+1}C_r$$ $$\beta = \frac{1}{n+1} \left(2n+2C_n \right)$$ Now $4\beta = 7\alpha$ $$\frac{4}{n+1} \left(2n+2 C_n \right) = 7 \left(\frac{2n+1}{n+1} C_n \right)$$ $$\frac{4}{n+1}^{2n+2}C_{n+2} = \frac{7}{n+1}^{2n+1}C_{n+1}$$ $$4\left(\frac{2n+2}{n+2}\right) = 7$$ n = 6 22. If the domain of $$f(x) = \ell n \left(\frac{2x+3}{4x^2-x-3} \right) + \cos^{-1} \left(\frac{2x+1}{x+2} \right)$$ is (α, β) find $5\alpha - 4\beta$. $$(1) - 2$$ $$(4) - 4$$ Ans. (1) **Sol.** For $$ln\left(\frac{2x+3}{4x^2-x-3}\right)$$ to be defined $$\frac{2x+3}{4x^2-x-3} > 0 \Rightarrow \frac{(2x+3)}{(4x+3)(x-1)} > 0$$ $$x \in \left(-\frac{3}{2}, -\frac{3}{4}\right) \cup (1, \alpha)$$(1) for $$\cos^{-1}\left(\frac{2x+1}{x+2}\right)$$ to be defined $$-1 \le \frac{2x+1}{x+2} \le 1 \Rightarrow \frac{3(x+1)}{x+2} \ge 0 \ \& \ \frac{x-1}{x+2} \le 0 \ \Rightarrow x \in [-1, 1] \qquad \dots (2)$$ $$(1) \cap (2)$$ $$x \in \left[-1, -\frac{3}{4}\right]$$ $$\alpha = -1, \beta = -\frac{3}{4}$$ $$5\alpha=-5,\quad 4\beta=-3$$ $$5\alpha - 4\beta = -5 - (-3) = -2$$